论文标题
观察具有Meronic波的声学拓扑欧拉绝缘子
Observation of an acoustic topological Euler insulator with meronic waves
论文作者
论文摘要
拓扑结构理论通常与单个间隙周围的乐队拓扑有关。仅研究了涉及多个差距的蓬勃发展}的非 - 阿伯式{拓扑},在传统范式之外揭示了一个新的地平线{拓扑物理学}。在这里,我们报告了在声学超材料中具有独特的Meronic表征的拓扑欧拉绝缘子阶段的第一个实验实现。我们证明了这个拓扑阶段具有多个非平凡特征:首先,该系统不能通过常规拓扑结构理论进行{},但具有非平凡的欧拉类,可捕获Bloch}频段的非常规几何形状{在Brillouin Zone}。其次,我们首次在实验中揭示了批量构造的概念。第三,使用详细的对称性{分析},我们表明拓扑欧拉绝缘子通过{一个非阿贝尔拓扑半学阶段演变而来,通过在其中一个带隙中对dirac点的an灭}。使用这些非平凡的特性,我们建立了一个非常规的散装对应关系,可以通过{泵浦探针技术}直接测量边缘状态来确认。因此,我们的工作揭示了具有{唯一} meronic {pattern}的非平凡拓扑效果绝缘子阶段,并将其作为{非阿布莱式拓扑}现象的平台铺平了道路。
Topological band theory has conventionally been concerned with the topology of bands around a single gap. Only recently non-Abelian {topologies that thrive on involving multiple gaps} were studied, unveiling a new horizon {in topological physics} beyond the conventional paradigm. Here, we report on the first experimental realization of a topological Euler insulator phase with unique meronic characterization in an acoustic metamaterial. We demonstrate that this topological phase has several nontrivial features: First, the system cannot be {described} by conventional topological band theory, but has a nontrivial Euler class that captures the unconventional geometry {of the Bloch} bands {in the Brillouin zone}. Second, we uncover in theory and probe in experiments a meronic configuration of the bulk Bloch states for the first time. Third, using a detailed symmetry {analysis}, we show that the topological Euler insulator evolves from {a non-Abelian topological semimetal phase via the annihilation of Dirac points in pairs in one of the band gaps}. With these nontrivial properties, we establish concretely an unconventional bulk-edge correspondence which is confirmed by directly measuring the edge states via {pump-probe techniques}. Our work thus unveils a nontrivial topological Euler insulator phase with {a unique} meronic {pattern} and paves the way as a platform for {non-Abelian topological} phenomena.