论文标题
多理智的衰减暗物质和背景光的效果
Multi-messenger High-Energy Signatures of Decaying Dark Matter and the Effect of Background Light
论文作者
论文摘要
南极的Icecube中微子天文台已使用TEV到PEV能量范围的遍历和起始事件测量了天体中微子。这些天体中性中微子的起源仍然很大程度上尚未得到解决,在它们的潜在来源中,可能是暗物质腐烂。使用MUON中微子对天体物理通量进行测量,并且随着开始事件的测量而处于轻微的张力。这种张力是由在40-200 TEV的能量范围内观察到的,相对于整个期望。以前的工作已经考虑到这种过剩可能是由于沉重的暗物质衰减引起的,并且使用伽马射线和中微子数据放置了约束。但是,这些约束并非没有警告,因为它们依赖于天体中微子通量的建模和伽马射线发射的来源。在这项工作中,我们通过将西藏为$_γ$数据,费米 - 拉特扩散数据和IceCube高能量开始事件样本来得出衰减暗物质的背景 - 无形的银河系和外乳术的约束。对于伽马射线限制,我们研究了由于静脉外背景光的未知强度引起的传播过程中电磁级联反应的不确定性。我们发现,这种不确定性在带有外层次数据的Gamma-ray限制中的变化高达$ \ sim 55 \%$。我们的结果表明,天体中微子通量的很大一部分可能是由于暗物质引起的,而排除在外取决于对伽马射线和中微子背景的假设。后者取决于尚未确定的来源。
The IceCube Neutrino Observatory at the South Pole has measured astrophysical neutrinos using through-going and starting events in the TeV to PeV energy range. The origin of these astrophysical neutrinos is still largely unresolved, and among their potential sources could be dark matter decay. Measurements of the astrophysical flux using muon neutrinos are in slight tension with starting event measurements. This tension is driven by an excess observed in the energy range of 40-200 TeV with respect to the through-going expectation. Previous works have considered the possibility that this excess may be due to heavy dark matter decay and have placed constraints using gamma-ray and neutrino data. However, these constraints are not without caveats since they rely on the modeling of the astrophysical neutrino flux and the sources of gamma-ray emission. In this work, we derive background-agnostic galactic and extragalactic constraints on decaying dark matter by considering Tibet AS$_γ$ data, Fermi-LAT diffuse data, and the IceCube high-energy starting event sample. For the gamma-ray limits, we investigate the uncertainties on secondary emission from electromagnetic cascades during propagation arising from the unknown intensity of the extragalactic background light. We find that such uncertainties amount to a variation of up to $\sim 55\%$ in the gamma-ray limits derived with extragalactic data. Our results imply that a significant fraction of the astrophysical neutrino flux could be due to dark matter and that ruling it out depends on the assumptions on the gamma-ray and neutrino background. The latter depends on the yet unidentified sources.