论文标题

cartan理论分类乘以$(2,3,5)$ - 分布

A Cartan-theoretic classification of multiply-transitive $(2,3,5)$-distributions

论文作者

The, Dennis

论文摘要

ÉlieCartan在他的1910年论文中,为5个manifolds上的通用等级2分布(即$(2,3,5)$分布提供了(本地)等价问题的旅行解决方案。从现代的角度来看,这些结构将等效的描述视为以$ g_2 $的商为模型的(常规,正常)抛物线的几何形状,但这在他的文章中并不透明:的确,1910年的纸箱“连接”不是现代意义上的“ cartan连接”。 We revisit the classification of multiply-transitive $(2,3,5)$-distributions from a modern Cartan-geometric perspective, incorporating $G_2$ structure theory throughout, obtaining: (i) the complete (local) classifications in the complex and real settings, phrased "Cartan-theoretically", and (ii) the full curvature and infinitesimal holonomy of all these models.此外,从理论上讲,我们证明了两个2个2秒互相滚动的$ 3:1 $比率的异常性,而不会扭曲或滑倒,从而产生了$(2,3,5)$的$(2,3,5)$ - 与Symemertry的分配$ g_2 $的分裂真实形式的lie代数。

In his 1910 paper, Élie Cartan gave a tour-de-force solution to the (local) equivalence problem for generic rank 2 distributions on 5-manifolds, i.e. $(2,3,5)$-distributions. From a modern perspective, these structures admit equivalent descriptions as (regular, normal) parabolic geometries modelled on a quotient of $G_2$, but this is not transparent from his article: indeed, the Cartan "connection" of 1910 is not a "Cartan connection" in the modern sense. We revisit the classification of multiply-transitive $(2,3,5)$-distributions from a modern Cartan-geometric perspective, incorporating $G_2$ structure theory throughout, obtaining: (i) the complete (local) classifications in the complex and real settings, phrased "Cartan-theoretically", and (ii) the full curvature and infinitesimal holonomy of all these models. Moreover, we Cartan-theoretically prove exceptionality of the $3:1$ ratio for two 2-spheres rolling on each other without twisting or slipping, yielding a $(2,3,5)$-distribution with symmetry the Lie algebra of the split real form of $G_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源