论文标题

所有谷物,一个方案(AGO):学习多粒实例表示空中场景分类

All Grains, One Scheme (AGOS): Learning Multi-grain Instance Representation for Aerial Scene Classification

论文作者

Bi, Qi, Zhou, Beichen, Qin, Kun, Ye, Qinghao, Xia, Gui-Song

论文摘要

空中场景分类仍然具有挑战性,因为:1)确定场景方案的关键对象的大小差异很大; 2)许多与场景方案无关的物体通常在图像中被淹没。因此,如何从多种大小中有效地感知利益区域(ROI)并从这种复杂的物体分布中建立更具歧视性的表示对于理解航空场景至关重要。在本文中,我们提出了一个新颖的所有谷物,一个计划(AGO)框架来应对这些挑战。据我们所知,这是第一项将经典多个实例学习扩展到多粒性配方的工作。特别是,它由多元颗粒感知模块(MGP),多支球种多实体表示模块(MBMIR)和自我对准的语义融合(SSF)模块组成。首先,我们的MGP保留了主链的差异卷积特征,从而放大了来自多晶粒的歧视性信息。然后,我们的MBMIR强调了MIL配方中多粒料表示的关键实例。最后,我们的SSF允许我们的框架从多粒度实例表示并将其融合相同的场景方案,从而使整个框架整体优化。值得注意的是,我们的AGO具有灵活性,并且可以轻松地以插件方式适应现有的CNN。关于UCM,AID和NWPU基准测试的广泛实验表明,我们的AGO与最先进的方法具有可比的性能。

Aerial scene classification remains challenging as: 1) the size of key objects in determining the scene scheme varies greatly; 2) many objects irrelevant to the scene scheme are often flooded in the image. Hence, how to effectively perceive the region of interests (RoIs) from a variety of sizes and build more discriminative representation from such complicated object distribution is vital to understand an aerial scene. In this paper, we propose a novel all grains, one scheme (AGOS) framework to tackle these challenges. To the best of our knowledge, it is the first work to extend the classic multiple instance learning into multi-grain formulation. Specially, it consists of a multi-grain perception module (MGP), a multi-branch multi-instance representation module (MBMIR) and a self-aligned semantic fusion (SSF) module. Firstly, our MGP preserves the differential dilated convolutional features from the backbone, which magnifies the discriminative information from multi-grains. Then, our MBMIR highlights the key instances in the multi-grain representation under the MIL formulation. Finally, our SSF allows our framework to learn the same scene scheme from multi-grain instance representations and fuses them, so that the entire framework is optimized as a whole. Notably, our AGOS is flexible and can be easily adapted to existing CNNs in a plug-and-play manner. Extensive experiments on UCM, AID and NWPU benchmarks demonstrate that our AGOS achieves a comparable performance against the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源