论文标题

分子分类的相位分离和临界大小

Phase separation and critical size in molecular sorting

论文作者

Floris, Elisa, Piras, Andrea, Pezzicoli, Francesco Saverio, Zamparo, Marco, Dall'Asta, Luca, Gamba, Andrea

论文摘要

分子分选是一个基本过程,允许真核细胞在适当的细胞膜子区域提炼和浓缩特定的化学因子,从而赋予它们具有不同的化学身份和功能性能。最近提出了这种分子蒸馏过程的现象学理论[ARXIV:1811.06760],基于以下想法:分子排序从:a)分类域的组合中出现。在此框架中,控制分子蒸馏效率的自然参数是相分离域的临界大小。在实验中,排序域似乎属于两个类别:非生产性域,其特征是寿命短,萃取概率较低,而生产域则演变为最终从膜系统脱离的囊泡。对于亚临界和超临界相分离域预测的不同命运是很诱人的。在这里,我们在先前引入的分子分类现象学理论的框架中讨论了这张图的含义。该理论的几个预测通过晶状体气体模型的数值模拟来验证。当排序域的数量接近最小值时,观察到排序是最有效的。为了帮助分析实验数据,提出了分类域的临界大小的操作定义。与实验结果的比较表明,从实验数据推论的生产/非生产域的统计特性与模型的数值模拟预测的统计特性一致。

Molecular sorting is a fundamental process that allows eukaryotic cells to distill and concentrate specific chemical factors in appropriate cell membrane subregions, thus endowing them with different chemical identities and functional properties. A phenomenological theory of this molecular distillation process has recently been proposed [arXiv:1811.06760], based on the idea that molecular sorting emerges from the combination of: a) phase-separation-driven formation of sorting domains, and b) domain-induced membrane bending, leading to the production of submicrometric lipid vesicles enriched in the sorted molecules. In this framework, a natural parameter controlling the efficiency of molecular distillation is the critical size of phase-separated domains. In the experiments, sorting domains appear to fall into two classes: unproductive domains, characterized by short lifetimes and low probability of extraction, and productive domains, that evolve into vesicles that ultimately detach from the membrane system. It is tempting to link these two classes to the different fates predicted by classical phase separation theory for subcritical and supercritical phase-separated domains. Here, we discuss the implication of this picture in the framework of the previously introduced phenomenological theory of molecular sorting. Several predictions of the theory are verified by numerical simulations of a lattice-gas model. Sorting is observed to be most efficient when the number of sorting domains is close to a minimum. To help in the analysis of experimental data, an operational definition of the critical size of sorting domains is proposed. Comparison with experimental results shows that the statistical properties of productive/unproductive domains inferred from experimental data are in agreement with those predicted from numerical simulations of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源