论文标题
将表面的绞线代数嵌入到dehn-Thurston坐标中的量子托里
An embedding of skein algebras of surfaces into quantum tori from Dehn-Thurston coordinates
论文作者
论文摘要
我们使用绞ica代数的作用在手柄机构的绞线模块上构建表面(闭合或带边界)的Kauffman支架绞线代数(封闭或带边界)的嵌入。我们使用这些嵌入来研究Kauffman Kkein代数的表示,并获得了Bonahon-Wong Unicity猜想的新证明。我们的方法允许人们用固定的经典阴影明确地重建唯一表示形式,只要经典的阴影是不可约束的,而不是与Quaternion群体共轭的图像。
We construct embeddings of Kauffman bracket skein algebras of surfaces (either closed or with boundary) into localized quantum tori using the action of the skein algebra on the skein module of the handlebody. We use those embeddings to study representations of Kauffman skein algebras at roots of unity and get a new proof of Bonahon-Wong's unicity conjecture. Our method allows one to explicitly reconstruct the unique representation with fixed classical shadow, as long as the classical shadow is irreducible with image not conjuguate to the quaternion group.