论文标题
LIDAR-IMU系统的可观察性意识性固有和外在校准
Observability-Aware Intrinsic and Extrinsic Calibration of LiDAR-IMU Systems
论文作者
论文摘要
准确且可靠的传感器校准对于融合激光雷达和惯性测量至关重要,这通常在机器人应用中可用。在本文中,我们提出了一种在连续的时间批次优化框架内提出一种新颖的LIDAR-IMU校准方法,其中传感器和传感器之间的空间临时外部外在的固有,而无需使用校准基础架构(例如信托标签)。与离散的时间方法相比,连续时间配方具有自然优势,可以融合LiDAR和IMU传感器的高率测量。为了提高效率并解决退化动作,利用了两个可观察性感知的模块:(i)信息理论数据选择策略仅选择数据收集过程中最有用的校准段,这仅通过处理所选信息的细分来显着提高校准效率。 (ii)非线性最小二乘优化的可观察性感知状态更新机制仅在状态空间中具有可识别的方向,具有截短的奇异值分解(TSVD),即使在不可用的数据段不可用的情况下,即使在退化的情况下,也可以实现准确的校准。所提出的LIDAR-IMU校准方法已在具有不同机器人平台的模拟和现实世界实验中得到了广泛的验证,证明了其在通常的人为环境中的高精度和可重复性。我们还开源的代码库使研究社区受益:{\ url {https://github.com/april-zju/oa-licalib}}}。
Accurate and reliable sensor calibration is essential to fuse LiDAR and inertial measurements, which are usually available in robotic applications. In this paper, we propose a novel LiDAR-IMU calibration method within the continuous-time batch-optimization framework, where the intrinsics of both sensors and the spatial-temporal extrinsics between sensors are calibrated without using calibration infrastructure such as fiducial tags. Compared to discrete-time approaches, the continuous-time formulation has natural advantages for fusing high rate measurements from LiDAR and IMU sensors. To improve efficiency and address degenerate motions, two observability-aware modules are leveraged: (i) The information-theoretic data selection policy selects only the most informative segments for calibration during data collection, which significantly improves the calibration efficiency by processing only the selected informative segments. (ii) The observability-aware state update mechanism in nonlinear least-squares optimization updates only the identifiable directions in the state space with truncated singular value decomposition (TSVD), which enables accurate calibration results even under degenerate cases where informative data segments are not available. The proposed LiDAR-IMU calibration approach has been validated extensively in both simulated and real-world experiments with different robot platforms, demonstrating its high accuracy and repeatability in commonly-seen human-made environments. We also open source our codebase to benefit the research community: {\url{https://github.com/APRIL-ZJU/OA-LICalib}}.