论文标题

以进球为导向的下一个最佳活动建议使用加固学习

Goal-Oriented Next Best Activity Recommendation using Reinforcement Learning

论文作者

Agarwal, Prerna, Gupta, Avani, Sindhgatta, Renuka, Dechu, Sampath

论文摘要

为正在进行的案件推荐一系列活动,要求建议符合基本业务流程,并满足完成时间或过程结果的绩效目标。关于下一个活动预测的现有工作可以预测未来的活动,但无法提供预测或实现目标的预测保证。因此,我们提出了一个面向目标的下一个最佳活动建议。我们提出的框架使用深度学习模型来预测鉴于活动的下一个最佳活动和目标的估计值。一种强化学习方法根据可能达到一个或多个目标的估计来探讨活动的顺序。我们通过引入额外的奖励功能来平衡推荐活动的结果并满足目标,进一步解决了多个目标的现实问题。我们在四个具有不同特征的现实世界数据集上展示了该方法的有效性。结果表明,与现有的最新最佳活动建议技术相比,我们提出的方法的建议在目标满意度和一致性方面的建议胜过。

Recommending a sequence of activities for an ongoing case requires that the recommendations conform to the underlying business process and meet the performance goal of either completion time or process outcome. Existing work on next activity prediction can predict the future activity but cannot provide guarantees of the prediction being conformant or meeting the goal. Hence, we propose a goal-oriented next best activity recommendation. Our proposed framework uses a deep learning model to predict the next best activity and an estimated value of a goal given the activity. A reinforcement learning method explores the sequence of activities based on the estimates likely to meet one or more goals. We further address a real-world problem of multiple goals by introducing an additional reward function to balance the outcome of a recommended activity and satisfy the goal. We demonstrate the effectiveness of the proposed method on four real-world datasets with different characteristics. The results show that the recommendations from our proposed approach outperform in goal satisfaction and conformance compared to the existing state-of-the-art next best activity recommendation techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源