论文标题

通过自由生活环境中的可穿戴设备预测纵向心脏呼吸的健身预测

Longitudinal cardio-respiratory fitness prediction through wearables in free-living environments

论文作者

Spathis, Dimitris, Perez-Pozuelo, Ignacio, Gonzales, Tomas I., Wu, Yu, Brage, Soren, Wareham, Nicholas, Mascolo, Cecilia

论文摘要

心肺适应性是代谢疾病和死亡率的既定预测指标。适应性直接测量为最大氧消耗(vo $ _ {2}最大$),或使用对标准运动测试的心率反应进行间接评估。但是,这种测试是昂贵且负担沉重的,因为它需要专门的设备,例如跑步机和氧气口罩,从而限制了其实用性。现代可穿戴设备捕获动态的现实世界数据,可以改善健身预测。在这项工作中,我们设计了将原始的可穿戴传感器数据转换为心肺适应性估计值的算法和模型。我们使用Fenland研究(n = 11,059)以及其纵向队列(n = 2,675)来验证这些估计的能力,可以在自由生活条件下捕获健身谱,并使用英国生物银行验证研究(n = 181)进行了第三个外部队列(n = 181),这些研究(n = 181)接受了最大值vo $ $ _ {2}最大标准测量。我们的结果表明,可穿戴设备和其他生物标志物作为神经网络的输入的组合在保留样本中与地面真理有很强的相关性(r = 0.82,95ci 0.80-0.83),超过其他方法和模型,并在时间上检测到适应性的变化(例如,经过7年后)。我们还展示了该模型的潜在空间如何用于健身意识的患者,从而为可扩展干预措施和个性化试验招募铺平了道路。这些结果证明了可穿戴设备的价值,以估计今天只能通过实验室测试来测量今天。

Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal oxygen consumption (VO$_{2}max$), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility. Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates' ability to capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N=2,675), and a third external cohort using the UK Biobank Validation Study (N=181) who underwent maximal VO$_{2}max$ testing, the gold standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82, 95CI 0.80-0.83), outperforming other approaches and models and detects fitness change over time (e.g., after 7 years). We also show how the model's latent space can be used for fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源