论文标题
定期检查颠倒:一种基于不变的方法
Regular Model Checking Upside-Down: An Invariant-Based Approach
论文作者
论文摘要
常规模型检查是一种验证无限状态系统的技术,其配置可以在合适的字母上表示为有限单词。我们正在研究的形式适用于其初始配置集合且其过渡关系的系统,其长度可提供的换能器捕获。为了验证安全属性,常规模型检查迭代性计算自动机识别越来越大的常规可及配置集,并检查它们是否包含不安全的配置。由于此过程通常不会终止,因此已经开发了加速,抽象和扩大技术来计算可及配置的常规超集。 在本文中,我们制定了一个互补程序。我们没有从下面接近一组可及的配置,而是从所有配置开始,然后从上方处理。我们使用的是,可及的配置集等于系统的所有电感不变性的交点。由于该交集通常是不规则的,因此我们引入了B-invariants,该交点被定义为由CNF形式所代表的,大多数是B子句。我们证明,对于每一个$ b \ geq0 $,所有归纳b-invariants的交叉点都是常规的,我们构建一个自动机识别它。我们表明,该自动机是否接受每$ b \ geq0 $的Expspace中的某些不安全配置,而B = 1的Pspace-commette。最后,我们研究B必须大大证明许多基准的安全性能。
Regular model checking is a technique for the verification of infinite-state systems whose configurations can be represented as finite words over a suitable alphabet. The form we are studying applies to systems whose set of initial configurations is regular, and whose transition relation is captured by a length-preserving transducer. To verify safety properties, regular model checking iteratively computes automata recognizing increasingly larger regular sets of reachable configurations, and checks if they contain unsafe configurations. Since this procedure often does not terminate, acceleration, abstraction, and widening techniques have been developed to compute a regular superset of the reachable configurations. In this paper, we develop a complementary procedure. Instead of approaching the set of reachable configurations from below, we start with the set of all configurations and approach it from above. We use that the set of reachable configurations is equal to the intersection of all inductive invariants of the system. Since this intersection is non-regular in general, we introduce b-invariants, defined as those representable by CNF-formulas with at most b clauses. We prove that, for every $b\geq0$, the intersection of all inductive b-invariants is regular, and we construct an automaton recognizing it. We show that whether this automaton accepts some unsafe configuration is in EXPSPACE for every $b\geq0$, and PSPACE-complete for b=1. Finally, we study how large must b be to prove safety properties of a number of benchmarks.