论文标题
使用明确的SO(3)到SU(2)地图识别量子相关性
Identifying Quantum Correlations Using Explicit SO(3) to SU(2) Maps
论文作者
论文摘要
特殊单位的量子状态在局部系统上对局部系统的两分之二的操作会在Bloch球体上引起特殊的正交旋转。给出了一个确切的公式,用于确定Bloch球上一些给定旋转的局部单位。该解决方案允许轻松操纵具有可编程的单个定义的两量量子状态。使用此明确公式,对相关矩阵的修改变得简单。使用我们的解决方案,可以将相关矩阵对角度化,而无需求解SU(2)中定义诱导特殊正交旋转的局部单位的参数(3)。由于相关矩阵的对角化等于相互作用的汉密尔顿相互作用,因此操纵相关矩阵对于对两个Qubit态的时间优势控制很重要。在讨论只能访问一个量子的时候,给出了SU(2)和SO(2)上的正交条件之间的关系,并操纵相关矩阵。
Quantum state manipulation of two-qubits on the local systems by special unitaries induces special orthogonal rotations on the Bloch spheres. An exact formula is given for determining the local unitaries for some given rotation on the Bloch sphere. The solution allows for easy manipulation of two-qubit quantum states with a single definition that is programmable. With this explicit formula, modifications to the correlation matrix are made simple. Using our solution, it is possible to diagonalize the correlation matrix without solving for the parameters in SU(2) that define the local unitary that induces the special orthogonal rotation in SO(3). Since diagonalization of the correlation matrix is equivalent to diagonalization of the interaction Hamiltonian, manipulating the correlation matrix is important in time-optimal control of a two-qubit state. The relationship between orthogonality conditions on SU(2) and SO(3) are given and manipulating the correlation matrix when only one qubit can be accessed is discussed.