论文标题

交互式模型卡:一种以人为本的模型文档的方法

Interactive Model Cards: A Human-Centered Approach to Model Documentation

论文作者

Crisan, Anamaria, Drouhard, Margaret, Vig, Jesse, Rajani, Nazneen

论文摘要

分析师越来越多地通过NLP或机器学习(ML)进行正式培训来采用和部署自然语言处理的深度学习模型(NLP)。但是,该文档旨在传达模型的细节和适当的使用,主要是针对具有ML或NLP专业知识的个人量身定制的。为了解决这一差距,我们对交互式模型卡进行了设计询问,该卡可以增强传统上静态的模型卡,并提供探索模型文档并与型号本身互动的功能。我们的调查包括一项最初的概念研究,该研究与ML,NLP和AI伦理学专家,然后与非专家分析师进行了单独的评估研究,这些分析师在其工作中使用ML模型。使用半结构化的访谈格式加上Think-Aloud协议,我们收集了总共30名参与者的反馈,这些参与者与不同版本的标准和交互式模型卡互动。通过对收集数据的主题分析,我们确定了几个概念上的维度,这些维度总结了标准和交互式模型卡的优势和局限性,包括:利益相关者;设计;指导;可理解性和解释性;感官和怀疑;以及信任与安全。我们的发现表明,使用深度学习模型的定向和支持非专家分析师的设计和交互性的重要性,以及需要考虑更广泛的社会技术环境和组织动态的重要性。我们还确定了设计元素,例如语言,视觉提示和警告等,这些元素支持交互性并使非交互性内容可访问。我们总结了我们的发现作为设计准则,并讨论了它们对以人为中心的AI/ML文档方法的含义。

Deep learning models for natural language processing (NLP) are increasingly adopted and deployed by analysts without formal training in NLP or machine learning (ML). However, the documentation intended to convey the model's details and appropriate use is tailored primarily to individuals with ML or NLP expertise. To address this gap, we conduct a design inquiry into interactive model cards, which augment traditionally static model cards with affordances for exploring model documentation and interacting with the models themselves. Our investigation consists of an initial conceptual study with experts in ML, NLP, and AI Ethics, followed by a separate evaluative study with non-expert analysts who use ML models in their work. Using a semi-structured interview format coupled with a think-aloud protocol, we collected feedback from a total of 30 participants who engaged with different versions of standard and interactive model cards. Through a thematic analysis of the collected data, we identified several conceptual dimensions that summarize the strengths and limitations of standard and interactive model cards, including: stakeholders; design; guidance; understandability & interpretability; sensemaking & skepticism; and trust & safety. Our findings demonstrate the importance of carefully considered design and interactivity for orienting and supporting non-expert analysts using deep learning models, along with a need for consideration of broader sociotechnical contexts and organizational dynamics. We have also identified design elements, such as language, visual cues, and warnings, among others, that support interactivity and make non-interactive content accessible. We summarize our findings as design guidelines and discuss their implications for a human-centered approach towards AI/ML documentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源