论文标题
定时六旋转式X射线脉冲星,包括快速旋转的年轻PSR J0058-7218和Big Glitcher PSR J0537-6910
Timing six energetic rotation-powered X-ray pulsars, including the fast-spinning young PSR J0058-7218 and Big Glitcher PSR J0537-6910
论文作者
论文摘要
测量脉冲星的旋转进化对于理解脉冲星的性质至关重要。在这里,我们为六个脉冲星的旋转演变提供了更新的时序模型,其中五个是使用X射线数据更好的旋转相连接的。对于新发现的快速能量的年轻Pulsar,PSR J0058-7218,我们将其定时模型的基线从1.4天增加到8个月,而不仅要精确地测量其旋转率nudot =(-6.2324 +//- 0.0001)x10^-11^-11^-11 Hz S^-1,但也是第二次= (4.2 +/- 0.2)X10^-21 Hz S^-2。 For the fastest and most energetic young pulsar, PSR J0537-6910 (with 16 ms spin period), we detect 4 more glitches, for a total of 15 glitches over 4.5 years of NICER monitoring, and show that its spin-down behavior continues to set this pulsar apart from all others, including a long-term braking index n = -1.234+/-0.009 and interglitch braking indices that asymptote to <〜7在小故障后很长时间。对于PSR J1101-6101,我们测量了一个更准确的旋转速率,该速率与未经相连接的先前值一致。对于PSR J1412+7922(也称为Calvera),我们将其定时模型的基线从上一年的模型扩展到4。4年,对于PSR J1849-0001,我们将基线从1.5岁延长至4。7年。我们还通过拟合2009 - 2019年以前的无线电和X射线自旋频率,并在此使用2018 Nustar和2021 Chandra数据来测量了Energetic Pulsar PSR J1813-1749的长期定时模型。
Measuring a pulsar's rotational evolution is crucial to understanding the nature of the pulsar. Here we provide updated timing models for the rotational evolution of six pulsars, five of which are rotation phase-connected using primarily NICER X-ray data. For the newly-discovered fast energetic young pulsar, PSR J0058-7218, we increase the baseline of its timing model from 1.4 days to 8 months and not only measure more precisely its spin-down rate nudot = (-6.2324+/-0.0001)x10^-11 Hz s^-1 but also for the first time the second time derivative of spin rate nuddot = (4.2+/-0.2)x10^-21 Hz s^-2. For the fastest and most energetic young pulsar, PSR J0537-6910 (with 16 ms spin period), we detect 4 more glitches, for a total of 15 glitches over 4.5 years of NICER monitoring, and show that its spin-down behavior continues to set this pulsar apart from all others, including a long-term braking index n = -1.234+/-0.009 and interglitch braking indices that asymptote to <~ 7 for long times after a glitch. For PSR J1101-6101, we measure a much more accurate spin-down rate that agrees with a previous value measured without phase-connection. For PSR J1412+7922 (also known as Calvera), we extend the baseline of its timing model from our previous 1-year model to 4.4 years, and for PSR J1849-0001, we extend the baseline from 1.5 years to 4.7 years. We also present a long-term timing model of the energetic pulsar, PSR J1813-1749, by fitting previous radio and X-ray spin frequencies from 2009-2019 and new ones measured here using 2018 NuSTAR and 2021 Chandra data.