论文标题

修改的量子力学基本方程

The modified fundamental equations of quantum mechanics

论文作者

Wang, Huai-Yu

论文摘要

Schrodinger方程,Klein-Gordon方程(KGE)和Dirac方程被认为是量子力学的基本方程。 Schrodinger方程的缺陷是没有负动能(NKE)溶液。 Dirac的方程式具有正动能(PKE)和NKE分支。这两个分支都应具有低摩托姆或非派系主义的近似值:一个是schrodinger方程,另一个是nke schrodinger方程。 KGE有两个问题:它是第二次导数的方程式,因此计算出的密度不确定为正,并且不是哈密顿式形式。为了克服这些问题,应将方程式修改为pke和nke-decled kges。修饰后量子力学的基本方程至少具有两个优点。它们是统一的,因为所有这些都包含第一次衍生物,并且相对于PKE和NKE是对称的。这反映了PKE和NKE问题的对称性,以及作者认为是我们宇宙的问题和暗物质。一维步骤势的问题通过利用非依赖性粒子的修改基本方程来解决。

The Schrodinger equation, Klein-Gordon equation (KGE), and Dirac equation are believed to be the fundamental equations of quantum mechanics. Schrodinger's equation has a defect in that there are no negative kinetic energy (NKE) solutions. Dirac's equation has positive kinetic energy (PKE) and NKE branches. Both branches should have low-momentum, or nonrelativistic, approximations: One is the Schrodinger equation, and the other is the NKE Schrodinger equation. The KGE has two problems: It is an equation of the second time derivative so that the calculated density is not definitely positive, and it is not a Hamiltonian form. To overcome these problems, the equation should be revised as PKE- and NKE-decoupled KGEs. The fundamental equations of quantum mechanics after the modification have at least two merits. They are unitary in that all contain the first time derivative and are symmetric with respect to PKE and NKE. This reflects the symmetry of the PKE and NKE matters, as well as, in the author's opinion, the matter and dark matter of our universe. The problems of one-dimensional step potentials are resolved by utilizing the modified fundamental equations for a nonrelativistic particle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源