论文标题
通过机械化学耦合的几何形状引起的模式
Geometry-induced patterns through mechanochemical coupling
论文作者
论文摘要
细胞内蛋白质模式调节各种重要的细胞过程,例如细胞分裂和运动性,这些过程通常涉及细胞形状的动态变化。细胞形状的这些变化反过来可能会影响图案形成蛋白的动力学,因此导致细胞形状和化学动力学之间的复杂反馈回路。尽管几项计算研究已经检查了所得的丰富动态,但尚未完全了解基本机制。为了阐明其中一些机制,我们探索了动态一维歧管上细胞极性的概念模型。使用来自差异几何形状的概念,我们在时间不断发展的歧管上得出了管理质量支持反应扩散系统的方程式。通过数学分析这些方程式,我们表明膜的动态形状变化可以在膜的一部分中诱导模式形成的不稳定性,我们称之为区域不稳定性。局部膜几何形状的变形也可以(区域)抑制模式形成,并在空间上移动已经存在的模式。我们通过应用和推广质量支持反应扩散系统的局部均衡理论来解释我们的发现。这使我们能够确定几何形式形成的图案形成不稳定性的简单发作标准,该标准与反应扩散系统的相空间结构相关。然后,膜形状变形与反应扩散动力学之间的反馈回路导致了令人惊讶的富裕模式现象学,包括振荡,行进波和未发生在具有固定膜形状的系统中的持久波。我们的工作表明,膜几何形状的局部构象充当质量支持反应扩散系统模式形成的重要动力控制参数。
Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and motility, which often involve dynamic changes of cell shape. These changes in cell shape may in turn affect the dynamics of pattern-forming proteins, hence leading to an intricate feedback loop between cell shape and chemical dynamics. While several computational studies have examined the resulting rich dynamics, the underlying mechanisms are not yet fully understood. To elucidate some of these mechanisms, we explore a conceptual model for cell polarity on a dynamic one-dimensional manifold. Using concepts from differential geometry, we derive the equations governing mass-conserving reaction-diffusion systems on time-evolving manifolds. Analyzing these equations mathematically, we show that dynamic shape changes of the membrane can induce pattern-forming instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of the local membrane geometry can also (regionally) suppress pattern formation and spatially shift already existing patterns. We explain our findings by applying and generalizing the local equilibria theory of mass-conserving reaction-diffusion systems. This allows us to determine a simple onset criterion for geometry-induced pattern-forming instabilities, which is linked to the phase-space structure of the reaction-diffusion system. The feedback loop between membrane shape deformations and reaction-diffusion dynamics then leads to a surprisingly rich phenomenology of patterns, including oscillations, traveling waves, and standing waves that do not occur in systems with a fixed membrane shape. Our work reveals that the local conformation of the membrane geometry acts as an important dynamical control parameter for pattern formation in mass-conserving reaction-diffusion systems.