论文标题
非对纠缠状态的CHSH不平等的几何解释
Geometric interpretation of the CHSH inequality of nonmaximally entangled states
论文作者
论文摘要
我们表明,对于纯和混合,CHSH不平等中相关性度量最大化的问题会降低,以最大化平行四边形的周长,该平行四边形由椭圆形包围,这些椭圆形,这些椭圆形,这些椭圆形,这些椭圆形,这些椭圆形,该椭圆形,其符号为双方系统中包含的纠缠。由于我们的几何描述对于非最大程度的纠缠状态也有效,因此我们可以确定相应的最佳测量值。
We show that for pure and mixed states the problem of maximizing the correlation measure in the CHSH inequality reduces to maximizing the perimeter of a parallelogram enclosed by an ellipse characterized by the entanglement contained in the bipartite system. Since our geometrical description is also valid for a non-maximally entangled state we can determine the corresponding optimal measurements.