论文标题

经典和动态的mordell-lang猜想的融合变体是积极特征的

A fusion variant of the classical and dynamical Mordell-Lang conjectures in positive characteristic

论文作者

Bell, Jason, Ghioca, Dragos

论文摘要

我们研究了一个阳性特征的经典和动态莫德尔 - 朗格之间的相互作用。让$ k $是一个积极特征的代数封闭的字段,让$ g $是$ k $的乘法组的有限生成的子组,让$ x $是定义在$ k $上定义的(不可约)的quasiprojective品种。我们考虑表格$ a_n:= f(φ^n(x_0))$的$ k $值序列,其中$φ\ colon x \ colon x \ rightarrow x $和$ f \ colon x \ colon x \ rightarrow \ rightarrow \ mathbb {p}^1 $是在$ k $和$ k $ y y y in x $ in x $ in的coptie of the x $ in x $ in x $ in o in x $ in x $ in x a点上$φ$和$ f $。我们表明,G $中的$ a_n \ in g $的$ n $是算术进步的有限结合,以及一组上层Banach密度零。此外,我们表明,如果每$ n $ $ a_n \ in g $ in g $ in $ n $,$ x $的$φ$轨道为zariski weens in $ x $,则{有}有多种圆环$ \ mathbb {g} _mm^d $ and maps $ and maps $ and maps $ c $ and maps $ψ $ g:\ mathbb {g} _m^d \ to \ mathbb {g} _m $,以至于$ a_n = g \ circ Cint ocircinbb {y y \ in \ mathbb {g} _m^d $。然后,我们描述结果的各种应用。

We study an open question at the interplay between the classical and the dynamical Mordell-Lang conjectures in positive characteristic. Let $K$ be an algebraically closed field of positive characteristic, let $G$ be a finitely generated subgroup of the multiplicative group of $K$, and let $X$ be a (irreducible) quasiprojective variety defined over $K$. We consider $K$-valued sequences of the form $a_n:=f(φ^n(x_0))$, where $φ\colon X\rightarrow X$ and $f\colon X\rightarrow\mathbb{P}^1$ are rational maps defined over $K$ and $x_0\in X$ is a point whose forward orbit avoids the indeterminacy loci of $φ$ and $f$. We show that the set of $n$ for which $a_n\in G$ is a finite union of arithmetic progressions along with a set of upper Banach density zero. In addition, we show that if $a_n\in G$ for every $n$ and the $φ$ orbit of $x$ is Zariski dense in $X$ then {there is} a multiplicative torus $\mathbb{G}_m^d$ and maps $Ψ:\mathbb{G}_m^d \to \mathbb{G}_m^d$ and $g:\mathbb{G}_m^d \to \mathbb{G}_m$ such that $a_n = g\circ Ψ^n(y)$ for some $y\in \mathbb{G}_m^d$. We then describe various applications of our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源