论文标题
贝叶斯介入的贝叶斯高斯等效评分,用于未知软干预措施的贝叶斯因果关系
The interventional Bayesian Gaussian equivalent score for Bayesian causal inference with unknown soft interventions
论文作者
论文摘要
在许多科学领域,描述控制系统的因果关系是一项基本任务,理想地通过实验研究解决。但是,在干预方案下获得数据可能并不总是可行的,而从纯粹的观察数据中发现因果关系是有挑战性的。在某些情况下,例如基因组学,我们可能会从异质研究条件中获得数据,而软(部分)干预措施仅与研究变量的一部分有关,其效果和目标可能是未知的。结合实验和观察性研究的数据提供了利用这两个领域并提高因果结构的可识别性的机会。为此,我们定义了观察性和介入数据的混合物的介入性BGE评分,其中干预的目标和影响可能未知。为了证明该方法,我们将其性能与其他最先进的算法进行了比较,无论是在模拟和数据分析应用程序中。我们方法的特权是,它具有贝叶斯的视角,从而完全表征了DAG结构的后验分布。给定一个DAG样本,也可以自动得出干预效果的完整后验分布。因此,该方法有效地捕获了结构和参数估计中的不确定性。复制模拟和分析的代码可在github.com/jackkuipers/ibge上公开获得。
Describing the causal relations governing a system is a fundamental task in many scientific fields, ideally addressed by experimental studies. However, obtaining data under intervention scenarios may not always be feasible, while discovering causal relations from purely observational data is notoriously challenging. In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables, whose effects and targets are possibly unknown. Combining data from experimental and observational studies offers the opportunity to leverage both domains and improve on the identifiability of causal structures. To this end, we define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown. To demonstrate the approach we compare its performance to other state-of-the-art algorithms, both in simulations and data analysis applications. Prerogative of our method is that it takes a Bayesian perspective leading to a full characterisation of the posterior distribution of the DAG structures. Given a sample of DAGs one can also automatically derive full posterior distributions of the intervention effects. Consequently the method effectively captures the uncertainty both in the structure and the parameter estimates. Codes to reproduce the simulations and analyses are publicly available at github.com/jackkuipers/iBGe