论文标题

一个尺寸不适合全部:个性化单词复杂性模型的情况

One Size Does Not Fit All: The Case for Personalised Word Complexity Models

论文作者

Gooding, Sian, Tragut, Manuel

论文摘要

复杂的单词识别(CWI)旨在检测读者可能难以理解的文本中的单词。已经表明,CWI系统可以改善文本简化,可读性预测和词汇获取建模。但是,单词的困难是一个高度特殊的概念,取决于读者的母语,熟练程度和阅读经验。在本文中,我们表明,在为单个读者预测单词复杂性时,个人模型是最好的。我们使用一个新颖的主动学习框架,该框架可以为个人量身定制模型,并释放复杂性注释和模型的数据集作为进一步研究的基准。

Complex Word Identification (CWI) aims to detect words within a text that a reader may find difficult to understand. It has been shown that CWI systems can improve text simplification, readability prediction and vocabulary acquisition modelling. However, the difficulty of a word is a highly idiosyncratic notion that depends on a reader's first language, proficiency and reading experience. In this paper, we show that personal models are best when predicting word complexity for individual readers. We use a novel active learning framework that allows models to be tailored to individuals and release a dataset of complexity annotations and models as a benchmark for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源