论文标题
正弦戈登和扭结唯一的Wigner分布
Wigner distribution of Sine Gordon and Kink solitons
论文作者
论文摘要
Wigner分布在制定量子力学的相空间类似物中起着重要作用。需要用于孤子的Schrodinger波功能来为孤子传播。得出的Wigner分布可以进一步用于计算位置或动量空间中的电荷分布,当前密度和波功能振幅。它还可以用于计算量子速度限制时间的上限。我们通过评估两个孤子的schrodinger波函数官能来得出并分析扭结和正弦孤子的Wigner分布。还讨论了我们从Wigner分布的衍生分析表达中获得的孤子的电荷,电流密度和量子速度极限。
Wigner distributions play a significant role in formulating the phase space analogue of quantum mechanics. The Schrodinger wave-functional for solitons is needed to derive it for solitons. The Wigner distribution derived can further be used for calculating the charge distributions, current densities and wave function amplitude in position or momentum space. It can be also used to calculate the upper bound of the quantum speed limit time. We derive and analyze the Wigner distributions for Kink and Sine-Gordon solitons by evaluating the Schrodinger wave-functional for both solitons. The charge, current density, and quantum speed limit for solitons are also discussed which we obtain from the derived analytical expression of Wigner distributions.