论文标题
在优化两级量子系统的相干和不连贯的控制
On optimization of coherent and incoherent controls for two-level quantum systems
论文作者
论文摘要
本文考虑了封闭和开放两级量子系统的一些控制问题。封闭的系统的动力学受Schrödinger方程和连贯控制的控制。开放系统的动力学受Gorini-Kossakowski-Sudarshan-Lindblad主方程的控制,其Hamiltonian取决于相干控制,而耗散的超级驱动器取决于不相互分的控制。对于封闭的系统,我们考虑了某些相值的相位移位问题的问题和最终时间,这些阶段是数值表明零相干控制(这是目标函数的固定点)并不是最佳的。它为实践解决量子控制问题提供了一个微妙的示例。对于开放系统,在[Pechen A.,Phys。 Rev. A.,84,042106(2011)]用于大约生成目标密度矩阵,在这里,我们考虑通过数值优化的分段恒定不连贯的控制,而不是使用恒定的Incomherent控制对目标密度Matrix的EIGENVALE分析进行分析计算的两个级系统,以修改第一个(“不相互”)阶段。为系统的状态演变,目标函数及其梯度得出了精确的分析公式。这些公式用于两步梯度投影方法。数值模拟表明,修改后的第一阶段的持续时间可能明显小于未修改的第一阶段的持续时间,但在分段常数控制等级中的优化成本。
This article considers some control problems for closed and open two-level quantum systems. The closed system's dynamics is governed by the Schrödinger equation with coherent control. The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation whose Hamiltonian depends on coherent control and superoperator of dissipation depends on incoherent control. For the closed system, we consider the problem for generation of the phase shift gate for some values of phases and final times for which numerically show that zero coherent control, which is a stationary point of the objective functional, is not optimal; it gives an example of subtle point for practical solving problems of quantum control. For the open system, in the two-stage method which was developed for generic N-level quantum systems in [Pechen A., Phys. Rev. A., 84, 042106 (2011)] for approximate generation of a target density matrix, here we consider the two-level systems for which modify the first ("incoherent") stage by numerically optimizing piecewise constant incoherent control instead of using constant incoherent control analytically computed using eigenvalues of the target density matrix. Exact analytical formulas are derived for the system's state evolution, the objective functions and their gradients for the modified first stage. These formulas are applied in the two-step gradient projection method. The numerical simulations show that the modified first stage's duration can be significantly less than the unmodified first stage's duration, but at the cost of optimization in the class of piecewise constant controls.