论文标题
悲观主义遇到VCG:通过离线增强学习学习动态机制设计
Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning
论文作者
论文摘要
近年来,动态机制设计引起了计算机科学家和经济学家的极大关注。通过允许代理商在多个回合中与卖方互动,在这种情况下,代理商的奖励功能可能会随着时间而变化并且与国家有关,该框架能够建模丰富的现实世界中的问题。在这些作品中,通常认为代理商和卖方之间的相互作用遵循马尔可夫决策过程(MDP)。我们专注于此类MDP的奖励和过渡函数的设置,而不是先验地知道的,并且我们正在尝试使用先验收集的数据集恢复最佳机制。在使用函数近似来处理较大状态空间的环境中,只有对功能类表达式的轻度假设,我们能够使用离线增强学习算法设计动态机制。此外,学到的机制大约具有三个关键的Desiderata:效率,个人理性和真实性。我们的算法基于悲观原则,仅需要对离线数据集的覆盖率进行温和的假设。据我们所知,我们的工作为动态机制设计提供了第一种离线RL算法,而无需假设覆盖范围。
Dynamic mechanism design has garnered significant attention from both computer scientists and economists in recent years. By allowing agents to interact with the seller over multiple rounds, where agents' reward functions may change with time and are state-dependent, the framework is able to model a rich class of real-world problems. In these works, the interaction between agents and sellers is often assumed to follow a Markov Decision Process (MDP). We focus on the setting where the reward and transition functions of such an MDP are not known a priori, and we are attempting to recover the optimal mechanism using an a priori collected data set. In the setting where the function approximation is employed to handle large state spaces, with only mild assumptions on the expressiveness of the function class, we are able to design a dynamic mechanism using offline reinforcement learning algorithms. Moreover, learned mechanisms approximately have three key desiderata: efficiency, individual rationality, and truthfulness. Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set. To the best of our knowledge, our work provides the first offline RL algorithm for dynamic mechanism design without assuming uniform coverage.