论文标题

脱位力学的几何建模和数值分析

Geometrical Modelling and Numerical Analysis of Dislocaion Mechanics

论文作者

Kobayashi, Shunsuke, Tarumi, Ryuichi

论文摘要

这项研究对差异几何形状框架内的错位进行了数学建模和数值分析。基本构型,即参考,中间配置和当前配置,表示为Riemann-Cartan歧管,该歧管为Riemannian Metric和Weitzenböck连接提供了配置。中间构型上的扭转2形式是通过错位密度的Hodge二元性获得的,相应的束同构受到Helmholtz分解。该分析引入了塑性变形的边界条件。 CARTAN第一结构方程和应力平衡方程是使用弱形式变分表达式和等几何分析来求解的。为这项研究进行的数值分析首次揭示了螺钉和边缘脱位周围塑性变形场的分布。它还证明了围绕遥远场显示与经典伏尔泰理论完全一致的位错的应力场,同时消除了通过经典方法在脱位时引入的奇异性。由于其中包括几何非线性,应力场包括几个特征。我们还证明了自由表面会影响塑性和弹性变形,但以不同的方式影响。这项研究的数学框架适用于任意脱位配置。

This study undertakes the mathematical modelling and numerical analysis of dislocations within the framework of differential geometry. The fundamental configurations, i.e. reference, intermediate and current configurations, are expressed as the Riemann-Cartan manifold, which equips the Riemannian metric and Weitzenböck connection. The torsion 2-form on the intermediate configuration is obtained through the Hodge duality of the dislocation density and the corresponding bundle isomorphism is subjected to the Helmholtz decomposition. This analysis introduces the boundary condition for plastic deformation. Cartan first structure equation and stress equilibrium equation are solved numerically using weak form variational expressions and isogeometric analysis. The numerical analysis carried out for this study reveals the distribution of plastic deformation fields around screw and edge dislocations for the first time. It also demonstrates stress fields around dislocations of which the distant fields show full agreement with the classical Volterra theory, while at the same time eliminating the singularity otherwise introduced at the dislocation by classical methods. The stress fields include several characteristic features due to the geometrical nonlinearity included therein. We also demonstrate that free surfaces affect both plastic and elastic deformation, but in different ways. The mathematical framework of this study is applicable to an arbitrary configuration of dislocations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源