论文标题

Poset Ramsey Number $ r(P,Q_N)$。 ii。敌

Poset Ramsey Number $R(P,Q_n)$. II. Antichains

论文作者

Winter, Christian

论文摘要

对于两个posets $(p,\ le_p)$和$(p',\ le_ {p'})$,我们说$ p'$如果存在一个注射函数$ f \ colon p'\ to p $ p $的副本,则p $ to p $ to p $ to p $ to p $,因此每两个$ x,y \ in p $ x,$ x \ x \ le_p y $ f(if)if(if fe) f(y)$。给定两个posets $ p $和$ q $,让poset ramsey number $ r(p,q)$是最小的整数$ n $,以使$ n $二维的布尔lattice的元素的任何颜色都包含蓝色或红色的元素,其中包含$ p $的副本,所有元素都是蓝色或$ q $ $ q $的副本,所有元素都是红色的。我们通过显示$ r(a_t,q_n)= n+3 $ for $ 3 \ le t \ le t \ le t \ le log \ log \ log \ log \ log \ log n $来确定反密歇根州的poset ramsey $ r(a_t,q_n)$。

For two posets $(P,\le_P)$ and $(P',\le_{P'})$, we say that $P'$ contains a copy of $P$ if there exists an injective function $f\colon P'\to P$ such that for every two $X,Y\in P$, $X\le_P Y$ if and only if $f(X)\le_{P'} f(Y)$. Given two posets $P$ and $Q$, let the poset Ramsey number $R(P,Q)$ be the smallest integer $N$ such that any coloring of the elements of an $N$-dimensional Boolean lattice in blue or red contains either a copy of $P$ where all elements are blue or a copy of $Q$ where all elements are red. We determine the poset Ramsey number $R(A_t,Q_n)$ of an antichain versus a Boolean lattice for small $t$ by showing that $R(A_t,Q_n)=n+3$ for $3\le t\le \log \log n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源