论文标题

DeepBayes - 随机非线性动力学模型中参数估计的估计值

DeepBayes -- an estimator for parameter estimation in stochastic nonlinear dynamical models

论文作者

Ghosh, Anubhab, Abdalmoaty, Mohamed, Chatterjee, Saikat, Hjalmarsson, Håkan

论文摘要

随机非线性动力学系统在现代现实世界应用中无处不在。但是,估计随机性非线性动力学模型的未知参数仍然是一个具有挑战性的问题。大多数现有方法都采用最大可能性或贝叶斯估计。但是,这些方法遭受了一定的局限性,最著名的是推理的大量计算时间,并且应用程序的灵活性有限。在这项工作中,我们提出了DeepBayes估计器,以利用深层复发性神经网络学习估算器的力量。该方法包括首先训练复发性神经网络,以最大程度地减少一组合成生成数据的于点估计误差,并使用从感兴趣的模型集中绘制的模型。然后,通过使用估计数据评估网络,可以将经过先验训练的估计器直接用于推断。深度复发的神经网络体系结构可以离线训练,并确保推断期间节省大量时间。我们尝试了两个流行的复发神经网络 - 长期短期记忆网(LSTM)和门控复发单元(GRU)。我们证明了我们提出的方法在不同示例模型上的适用性,并与最新方法进行了详细的比较。我们还提供了有关现实世界非线性基准问题的研究。实验评估表明,所提出的方法渐近地与贝叶斯估计量一样好。

Stochastic nonlinear dynamical systems are ubiquitous in modern, real-world applications. Yet, estimating the unknown parameters of stochastic, nonlinear dynamical models remains a challenging problem. The majority of existing methods employ maximum likelihood or Bayesian estimation. However, these methods suffer from some limitations, most notably the substantial computational time for inference coupled with limited flexibility in application. In this work, we propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator. The method consists of first training a recurrent neural network to minimize the mean-squared estimation error over a set of synthetically generated data using models drawn from the model set of interest. The a priori trained estimator can then be used directly for inference by evaluating the network with the estimation data. The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference. We experiment with two popular recurrent neural networks -- long short term memory network (LSTM) and gated recurrent unit (GRU). We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches. We also provide a study on a real-world nonlinear benchmark problem. The experimental evaluations show that the proposed approach is asymptotically as good as the Bayes estimator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源