论文标题

横向场模型的基态魔法资源理论

Magic-state resource theory for the ground state of the transverse-field Ising model

论文作者

Oliviero, Salvatore F. E., Leone, Lorenzo, Hamma, Alioscia

论文摘要

量子多体系统的基础状态既纠缠在一起又具有一种量子复杂性,因为它们的准备工作需要超越克利福德组和稳定器状态的通用资源。这些资源(有时被描述为魔术)也是量子优势的关键要素。我们研究了稳定器rényi熵在可集成的横向场Ising自旋链中的行为。我们表明,相互作用的局部性在间隙阶段导致局部稳定器rényi熵,从而使该数量可以根据差距阶段的局部数量进行计算,而在差距阶段中,涉及$ l $ spins的测量值是在关键点上以$ o(l^{-1})获得误差缩放的关键点。

Ground states of quantum many-body systems are both entangled and possess a kind of quantum complexity as their preparation requires universal resources that go beyond the Clifford group and stabilizer states. These resources - sometimes described as magic - are also the crucial ingredient for quantum advantage. We study the behavior of the stabilizer Rényi entropy in the integrable transverse field Ising spin chain. We show that the locality of interactions results in a localized stabilizer Rényi entropy in the gapped phase thus making this quantity computable in terms of local quantities in the gapped phase, while measurements involving $L$ spins are necessary at the critical point to obtain an error scaling with $O(L^{-1})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源