论文标题
Unrealnas:我们可以使用虚幻数据搜索神经体系结构吗?
UnrealNAS: Can We Search Neural Architectures with Unreal Data?
论文作者
论文摘要
神经建筑搜索(NAS)在深神网络(DNNS)的自动设计方面取得了巨大成功。但是,使用数据搜索网络体系结构的最佳方法仍然不清楚,并且正在探索。先前的工作分析了在NAS中拥有地面标签的必要性,并激发了广泛的兴趣。在这项工作中,我们采取进一步的步骤来质疑NAS是否有效是否需要实际数据。这个问题的答案对于有限的可访问数据的应用程序很重要,并且可以通过利用数据生成的额外灵活性来帮助人们改善NAS。为了探索NAS是否需要真实数据,我们使用以下方式构造了三种不真实数据集,1)随机标记为真实图像; 2)生成的图像和标签; 3)带有随机标签的高斯噪声。这些数据集促进了分析搜索体系结构的概括和表达性。我们使用流行的可区分NAS方法研究了在这些构建的数据集上搜索的体系结构的性能。对CIFAR,ImageNet和Chexpert的广泛实验表明,与从常规的NAS管道中获得的带有实际标记数据的搜索架构可以实现有希望的结果,这表明使用不真实的数据执行NAS的可行性。
Neural architecture search (NAS) has shown great success in the automatic design of deep neural networks (DNNs). However, the best way to use data to search network architectures is still unclear and under exploration. Previous work has analyzed the necessity of having ground-truth labels in NAS and inspired broad interest. In this work, we take a further step to question whether real data is necessary for NAS to be effective. The answer to this question is important for applications with limited amount of accessible data, and can help people improve NAS by leveraging the extra flexibility of data generation. To explore if NAS needs real data, we construct three types of unreal datasets using: 1) randomly labeled real images; 2) generated images and labels; and 3) generated Gaussian noise with random labels. These datasets facilitate to analyze the generalization and expressivity of the searched architectures. We study the performance of architectures searched on these constructed datasets using popular differentiable NAS methods. Extensive experiments on CIFAR, ImageNet and CheXpert show that the searched architectures can achieve promising results compared with those derived from the conventional NAS pipeline with real labeled data, suggesting the feasibility of performing NAS with unreal data.