论文标题
在线通用的多尺度有限元方法,用于与人造地面冻结的热和传质问题
An Online Generalized Multiscale finite element method for heat and mass transfer problem with artificial ground freezing
论文作者
论文摘要
在本文中,我们提出了一种在线通用的多尺度有限元方法(在线GMSFEM),用于使用人造地面冻结管道的异质媒体中的热和传质问题。该过程的数学模型基于经典的Stefan模型,该模型描述了相变的传热,并在多孔介质中考虑了过滤。该模型由温度和压力方程系统描述。对于精细的网格解决方案,我们使用虚拟域方法使用有限元方法。为了在粗网格上得出解决方案,我们使用基于在线GMSFEM的模型还原过程。在线版本的GMSFEM允许我们采用较少数量的离线多尺度函数。在我们的方法中,我们使用使用快照空间构建的脱字离线函数,并基于光谱问题。这是基础构造的标准方法。要考虑人造地面冻结管道,我们在离线阶段计算了其他基础功能。为了准确近似相变,我们添加了在线多尺度基函数。我们构建在线基础,以最大程度地减少局部残差值的误差。在线程序大大提高了标准GMSFEM的准确性。我们在具有分层异质性的二维结构域中介绍了数值结果。为了研究该方法的准确性,我们提出了不同数量的离线和在线基础功能的结果。提出的结果表明,在线GMSFEM可以高精度生成解决方案,并且需要少量的计算资源。
In this paper, we present an Online Generalized Multiscale Finite Element Method(Online GMsFEM) for heat and mass transfer problem in heterogeneous media with artificial ground freezing pipes. The mathematical model of the process is based on the classical Stefan model, which describes heat transfer with a phase transition and takes into account filtration in a porous medium. The model is described by a system of equations for temperature and pressure. For fine grid solution, we use a finite element method using the fictitious domain method. To derive a solution on the coarse grid, we use a model reduction procedure based on Online GMsFEM. Online version of GMsFEM allows to us to take less number of offline multiscale basis functions. In our approach, we use decoupled offline basis functions constructed with snapshot space and based on spectral problems. This is the standard approach of basis construction. To take into account artificial ground freezing pipes, we compute an additional basis functions on the offline stage. For the accurate approximation of phase change we add online multiscale basis functions. We construct online basis that minimizes error by values of local residuals. Online procedure is significantly improves the accuracy of standard GMsFEM. We present numerical results in two-dimensional domain with layered heterogeneity. To investigate accuracy of the method, we present results with different number of offline and online basis functions. The presented results show that Online GMsFEM can produce solution with high accuracy and requires small computational resources.