论文标题
声学,声音,布里渊的光散射和Faraday Wave的频率梳:物理基础和应用
Acoustic, phononic, Brillouin light scattering and Faraday wave based frequency combs: physical foundations and applications
论文作者
论文摘要
频率梳子(FCS) - 包含等距相干峰的光谱 - 使研究人员和工程师能够测量具有高精度的复杂信号的频率,从而彻底改变了感应,计量和通信的领域,并使基本科学受益。尽管到目前为止,大多数光学FC都发现了广泛的应用,但通常可以使用光线以外的波生成FC。在这里,我们审查并总结了声音梳子(AFC)的新兴领域的最新成就,包括语音FC和相关的声学,布里远的光散射以及基于Faraday Wave的技术,这些技术能够开发声子激光器,量子计算机,量子计算机和高级振动传感器。特别是,我们的讨论集中在AFC在各种物理,化学和生物学系统中的精确测量中的潜在应用,在这些条件下,使用光,因此光学FCS面临技术和基本限制,例如,在水下距离测量和生物医学成像应用中的情况。这篇评论文章也将引起人们寻求讨论不同类AFC的特定理论方面的读者。为此,我们通过我们的原始分析和数值模拟的结果来支持主流讨论,这些结果可用于设计使用液体中气泡的振荡,液滴振动和等离激元纳米结构中布里素光散射的等离子液的振动产生的AFC。我们还讨论了无毒室温液体 - 金属合金在AFC生成领域的应用。
Frequency combs (FCs) -- spectra containing equidistant coherent peaks -- have enabled researchers and engineers to measure the frequencies of complex signals with high precision thereby revolutionising the areas of sensing, metrology and communications and also benefiting the fundamental science. Although mostly optical FCs have found widespread applications thus far, in general FCs can be generated using waves other than light. Here, we review and summarise recent achievements in the emergent field of acoustic frequency combs (AFCs) including phononic FCs and relevant acousto-optical, Brillouin light scattering and Faraday wave-based techniques that have enabled the development of phonon lasers, quantum computers and advanced vibration sensors. In particular, our discussion is centred around potential applications of AFCs in precision measurements in various physical, chemical and biological systems in conditions, where using light, and hence optical FCs, faces technical and fundamental limitations, which is, for example, the case in underwater distance measurements and biomedical imaging applications. This review article will also be of interest to readers seeking a discussion of specific theoretical aspects of different classes of AFCs. To that end, we support the mainstream discussion by the results of our original analysis and numerical simulations that can be used to design the spectra of AFCs generated using oscillations of gas bubbles in liquids, vibrations of liquid drops and plasmonic enhancement of Brillouin light scattering in metal nanostructures. We also discuss the application of non-toxic room-temperature liquid-metal alloys in the field of AFC generation.