论文标题
具有有意义标签推理的统一语义键入
Unified Semantic Typing with Meaningful Label Inference
论文作者
论文摘要
语义键入旨在将文本上下文中的令牌或跨度分类为语义类别,例如关系,实体类型和事件类型。语义类别的推断标签有意义地解释了机器如何理解文本的组成部分。在本文中,我们提出了Unist,这是一个统一的语义键入框架,它通过将输入和标签投影到联合语义嵌入空间中来捕获标签语义。为了将不同的词汇和关系语义分型任务作为统一任务,我们将任务描述合并为与输入共同编码的任务描述,从而使Unist可以适应不同的任务而不引入特定于任务的模型组件。 Unist优化了保证金排名损失,以使输入和标签的语义相关性反映在它们的嵌入相似性中。我们的实验表明,Unist在三个语义键入任务中实现了强大的性能:实体分类,关系分类和事件键入。同时,Unist有效地转移了标签的语义知识,并大大提高了推断很少见和看不见类型的普遍性。此外,可以在统一的框架内共同训练多个语义分型任务,从而导致单个紧凑的多任务模型,该模型与专用的单任务模型相当,同时提供了更好的可传递性。
Semantic typing aims at classifying tokens or spans of interest in a textual context into semantic categories such as relations, entity types, and event types. The inferred labels of semantic categories meaningfully interpret how machines understand components of text. In this paper, we present UniST, a unified framework for semantic typing that captures label semantics by projecting both inputs and labels into a joint semantic embedding space. To formulate different lexical and relational semantic typing tasks as a unified task, we incorporate task descriptions to be jointly encoded with the input, allowing UniST to be adapted to different tasks without introducing task-specific model components. UniST optimizes a margin ranking loss such that the semantic relatedness of the input and labels is reflected from their embedding similarity. Our experiments demonstrate that UniST achieves strong performance across three semantic typing tasks: entity typing, relation classification and event typing. Meanwhile, UniST effectively transfers semantic knowledge of labels and substantially improves generalizability on inferring rarely seen and unseen types. In addition, multiple semantic typing tasks can be jointly trained within the unified framework, leading to a single compact multi-tasking model that performs comparably to dedicated single-task models, while offering even better transferability.