论文标题

希尔伯特空间中单调算子差异零算法的定量结果

Quantitative results on algorithms for zeros of differences of monotone operators in Hilbert space

论文作者

Pischke, Nicholas

论文摘要

我们以T. tao的含义的形式提供定量信息,并以T. tao的意义,(按公制的规律性假设)通过使用“证明矿业的技术”(Mathemathematical of Mathematical of Mathemathical of Mathemathical of Mathematical of Mathemathemathemathemathemathemathemathemathemathemations of Mathemations of Mathemathemathemathemathematightlogation''的Moudiques,该算法的收敛速率近似于最大值单调操作员的差异。对于收敛速率,我们为具有公制规则性假设的准粉状单调序列的收敛速率构建提供了一个抽象而总体的结果,从而推广了由于U. Kohlenbach,G.López-dacedo和A. nicolae而导致的Fejér单调序列的先前结果。

We provide quantitative information in the form of a rate of metastability in the sense of T. Tao and (under a metric regularity assumption) a rate of convergence for an algorithm approximating zeros of differences of maximally monotone operators due to A. Moudafi by using techniques from `proof mining', a subdiscipline of mathematical logic. For the rate of convergence, we provide an abstract and general result on the construction of rates of convergence for quasi-Fejér monotone sequences with metric regularity assumptions, generalizing previous results for Fejér monotone sequences due to U. Kohlenbach, G. López-Acedo and A. Nicolae.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源