论文标题
任意维度的固定纯度密度矩阵的分布
The distribution of density matrices at fixed purity for arbitrary dimensions
论文作者
论文摘要
我们提出了密度矩阵的边际累积分布函数(CDF)的固定纯度$ \ tfrac {1} {n} {n} {n} \leμ_n(ρ)= \ textrm {tr} [ρ^2]我们为$ n = 2 $(微不足道),$ n = 3 $和$ n = 4 $提供了封闭式的分析公式,并给出了更高任意维度的CDF处方。这些公式允许一个人在选定的用户处均匀样品密度矩阵,固定恒定纯度,并详细介绍了这些密度矩阵如何非线性分布在$μ_n(ρ)\ in [\ tfrac {1}} {n} in [\ tfrac {1} {n}中,1] $。作为这些公式的说明,我们将对数的负态和量子不调与(wootter's)并发进行比较,这些并发涵盖了$μ_4(ρ)\ in [\ tfrac {1} {1} {4},1] $的一系列固定纯度值,对于$ n = 4 $ n = 4 $(两个qubits)。我们还研究了通过追踪其高维纯化的储层来获得的减少$ n $维的特征值的分布。最后,我们通过数值研究了最近提出的补充量子相关性猜想,该猜想通过从两对相互无偏见的测量结果中获得的经典相互信息的总和来降低两部分系统的量子相互信息。最后,简要讨论了在非常高维的固定纯度均匀采样$ρ$的CDF和逆CDF计算的数值实现问题。
We present marginal cumulative distribution functions (CDF) for density matrices $ρ$ of fixed purity $\tfrac{1}{N}\leμ_N(ρ)=\textrm{Tr}[ρ^2]\le 1$ for arbitrary dimension $N$. We give closed form analytic formulas for the cases $N=2$ (trivial), $N=3$ and $N=4$, and present a prescription for CDFs of higher arbitrary dimensions. These formulas allows one to uniformly sample density matrices at a user selected, fixed constant purity, and also detail how these density matrices are distributed nonlinearly in the range $μ_N(ρ)\in[\tfrac{1}{N}, 1]$. As an illustration of these formulas, we compare the logarithmic negativity and quantum discord to the (Wootter's) concurrence spanning a range of fixed purity values in $μ_4(ρ)\in[\tfrac{1}{4}, 1]$ for the case of $N=4$ (two qubits). We also investigate the distribution of eigenvalues of a reduced $N$-dimensional obtained by tracing out the reservoir of its higher-dimensional purification. Lastly, we numerically investigate a recently proposed complementary-quantum correlation conjecture which lower bounds the quantum mutual information of a bipartite system by the sum of classical mutual informations obtained from two pairs of mutually unbiased measurements. Finally, numerical implementation issues for the computation of the CDFs and inverse CDFs necessary for uniform sampling $ρ$ for fixed purity at very high dimension are briefly discussed.