论文标题

在电路深度缩放上进行量子近似优化

On Circuit Depth Scaling For Quantum Approximate Optimization

论文作者

Akshay, V., Philathong, H., Campos, E., Rabinovich, D., Zacharov, I., Zhang, Xiao-Ming, Biamonte, J.

论文摘要

变分量子算法是现代量子编程的核心。这些算法涉及使用经典的处理器训练参数化的量子电路,该方法部分根据经典的机器学习改编。这些算法的重要子类是量子近似优化算法(QAOA)。众所周知,问题密度 - 与可变比率的问题约束 - 在固定深度QAOA中诱导参数不足。文献中已经报道了密度依赖性性能,但是实现固定性能所需的电路深度(此后称为临界深度)仍然未知。在这里,我们提出了一个预测模型,基于对密度的临界深度缩放的逻辑饱和猜想。为了关注Max-2-SAT的随机实例,我们测试了我们的预测模型,针对具有多达15个QUAT的模拟数据。我们报告的平均临界深度,即达到0.7的成功概率所需的平均临界深度,其密度超过4的值为10的值。我们观察到预测模型,以描述$3σ$置信区间内的模拟数据。此外,基于模型,临界深度的线性趋势与问题大小相对于5至15量尺寸的范围恢复。

Variational quantum algorithms are the centerpiece of modern quantum programming. These algorithms involve training parameterized quantum circuits using a classical co-processor, an approach adapted partly from classical machine learning. An important subclass of these algorithms, designed for combinatorial optimization on currrent quantum hardware, is the quantum approximate optimization algorithm (QAOA). It is known that problem density - a problem constraint to variable ratio - induces under-parametrization in fixed depth QAOA. Density dependent performance has been reported in the literature, yet the circuit depth required to achieve fixed performance (henceforth called critical depth) remained unknown. Here, we propose a predictive model, based on a logistic saturation conjecture for critical depth scaling with respect to density. Focusing on random instances of MAX-2-SAT, we test our predictive model against simulated data with up to 15 qubits. We report the average critical depth, required to attain a success probability of 0.7, saturates at a value of 10 for densities beyond 4. We observe the predictive model to describe the simulated data within a $3σ$ confidence interval. Furthermore, based on the model, a linear trend for the critical depth with respect problem size is recovered for the range of 5 to 15 qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源