论文标题

SpinEnetv2:临床MR扫描的自动检测,标记和放射学分级

SpineNetV2: Automated Detection, Labelling and Radiological Grading Of Clinical MR Scans

论文作者

Windsor, Rhydian, Jamaludin, Amir, Kadir, Timor, Zisserman, Andrew

论文摘要

该技术报告介绍了SpinEnetv2,这是一种自动化工具:(i)检测和标记临床脊柱磁共振(MR)扫描中的椎体跨一系列常用序列; (ii)对T2加权扫描中的腰椎椎间盘进行放射学分级,以进行一系列常见的退行性变化。 SpinEnetV2通过两种方式改进了原始的SpineNet软件:(1)椎体检测阶段的速度明显更快,更准确,并且在各种视野中工作(与仅腰部扫描相反)。 (2)放射学分级采用了更强大的体系结构,添加了几个新的分级方案而不会损失性能。该软件的演示可以在项目网站上获得:http://zeus.robots.ox.ac.uk/spinenet2/。

This technical report presents SpineNetV2, an automated tool which: (i) detects and labels vertebral bodies in clinical spinal magnetic resonance (MR) scans across a range of commonly used sequences; and (ii) performs radiological grading of lumbar intervertebral discs in T2-weighted scans for a range of common degenerative changes. SpineNetV2 improves over the original SpineNet software in two ways: (1) The vertebral body detection stage is significantly faster, more accurate and works across a range of fields-of-view (as opposed to just lumbar scans). (2) Radiological grading adopts a more powerful architecture, adding several new grading schemes without loss in performance. A demo of the software is available at the project website: http://zeus.robots.ox.ac.uk/spinenet2/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源