论文标题

生长的各向同性神经细胞自动机

Growing Isotropic Neural Cellular Automata

论文作者

Mordvintsev, Alexander, Randazzo, Ettore, Fouts, Craig

论文摘要

建模多细胞生物通过单个细胞之间的局部相互作用(形态发生)的多细胞生物的能力是发育生物学的长期挑战。最近,提出了神经细胞自动机(NCA)模型,是找到产生所需的全局行为的局部系统规则的一种方式,例如通过从单个单元开始的网格上使用相同的规则,例如增长和持久预定的目标模式。在这项工作中,我们认为原始的增长NCA模型具有重要的限制:学习更新规则的各向异性。这意味着存在沿特定方向的细胞的外部因素的存在。换句话说,基础系统的“物理”规则并不是旋转不变的,因此禁止在同一网格上存在目标模式的不同方向实例。我们提出了一个没有这种限制的各向同性NCA(ISONCA)模型。我们证明,可以通过两种方法中的任何一种来训练这种细胞系统,以增强准确的不对称模式:(1)通过使用结构化种子打破对称性,或(2)引入旋转反射不变的训练目标并依赖于由异步细胞更新引起的对称性破坏。

Modeling the ability of multicellular organisms to build and maintain their bodies through local interactions between individual cells (morphogenesis) is a long-standing challenge of developmental biology. Recently, the Neural Cellular Automata (NCA) model was proposed as a way to find local system rules that produce a desired global behaviour, such as growing and persisting a predefined target pattern, by repeatedly applying the same rule over a grid starting from a single cell. In this work, we argue that the original Growing NCA model has an important limitation: anisotropy of the learned update rule. This implies the presence of an external factor that orients the cells in a particular direction. In other words, "physical" rules of the underlying system are not invariant to rotation, thus prohibiting the existence of differently oriented instances of the target pattern on the same grid. We propose a modified Isotropic NCA (IsoNCA) model that does not have this limitation. We demonstrate that such cell systems can be trained to grow accurate asymmetrical patterns through either of two methods: (1) by breaking symmetries using structured seeds or (2) by introducing a rotation-reflection invariant training objective and relying on symmetry-breaking caused by asynchronous cell updates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源