论文标题

Danbo:通过图神经网络解开铰接的神经体表示

DANBO: Disentangled Articulated Neural Body Representations via Graph Neural Networks

论文作者

Su, Shih-Yang, Bagautdinov, Timur, Rhodin, Helge

论文摘要

深度学习可以通过学习几何形状和外观3D扫描,模板网格和多视图图像来大大改善动画人类模型的现实主义。高分辨率型号启用了照片现实的化身,但要为最终用户无法使用的工作室设置。我们的目标是直接从原始图像中创建化身,而不依靠昂贵的工作室设置和表面跟踪。尽管存在一些这样的方法,但这些方法具有有限的概括能力,并且容易学习无关紧要的身体部位之间的虚假(机会)相关性,从而导致不可行的变形和看不见的姿势缺失身体部位。我们引入了一种三阶段的方法,该方法诱导了两种电感偏见,以更好地分解姿势依赖性变形。首先,我们将身体部位与图神经网络明确建模。其次,为了进一步降低机会相关的影响,我们引入了使用分解的体积表示和新的聚合函数的局部每骨特征。我们证明,我们的模型在具有挑战性的看不见的姿势下产生现实的身体形状,并显示出高质量的图像合成。与竞争方法相比,我们提出的代表性在模型能力,表现力和鲁棒性之间取得了更好的权衡。项目网站:https://lemonatsu.github.io/danbo。

Deep learning greatly improved the realism of animatable human models by learning geometry and appearance from collections of 3D scans, template meshes, and multi-view imagery. High-resolution models enable photo-realistic avatars but at the cost of requiring studio settings not available to end users. Our goal is to create avatars directly from raw images without relying on expensive studio setups and surface tracking. While a few such approaches exist, those have limited generalization capabilities and are prone to learning spurious (chance) correlations between irrelevant body parts, resulting in implausible deformations and missing body parts on unseen poses. We introduce a three-stage method that induces two inductive biases to better disentangled pose-dependent deformation. First, we model correlations of body parts explicitly with a graph neural network. Second, to further reduce the effect of chance correlations, we introduce localized per-bone features that use a factorized volumetric representation and a new aggregation function. We demonstrate that our model produces realistic body shapes under challenging unseen poses and shows high-quality image synthesis. Our proposed representation strikes a better trade-off between model capacity, expressiveness, and robustness than competing methods. Project website: https://lemonatsu.github.io/danbo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源