论文标题

头部安装显示的实用扫视预测:迈向全面模型

Practical Saccade Prediction for Head-Mounted Displays: Towards a Comprehensive Model

论文作者

Arabadzhiyska, Elena, Tursun, Cara, Seidel, Hans-Peter, Didyk, Piotr

论文摘要

引人注目的跟踪技术是虚拟和增强现实耳机等新显示设备的组成部分。凝视信息的应用范围从开发眼模式的新互动技术到凝视诱人的数字内容创建。但是,在许多这些应用程序中,系统潜伏期仍然是一个重要的问题,因为它破坏了当前和测量的凝视位置之间的同步。因此,它可能导致不必要的视觉文物和用户体验的降解。在这项工作中,我们专注于呈现的渲染应用,其中图像的质量降低了,以降低计算节省的外围。在Foveated渲染中,潜伏期的存在导致渲染框架的延迟更新,从而使用户可见质量的退化。为了解决这个问题并打击系统潜伏期,最近的工作建议使用扫视着陆位置预测,以推断延迟的眼睛跟踪样品的目光信息。尽管已经证明了这种策略的好处,但解决方案的范围从简单有效的策略范围,这些解决方案对Saccadic Eye的运动做出了几个假设,到使用机器学习技术的更复杂且昂贵的更为复杂和昂贵的方法。但是,目前尚不清楚预测在多大程度上可以从考虑其他因素中受益。本文介绍了一系列实验,研究了不同因素对扫视预测的重要性的重要性和增强现实应用中的预测。特别是,我们研究了扫视方向在3D空间中的影响以及平稳的追捕眼动(SPEM),以及它们的影响如何与用户之间的变异性相比。我们还提出了一种简单而有效的校正方法,该方法适应了现有的扫视预测方法来处理这些因素,而无需进行广泛的数据收集。

Eye-tracking technology is an integral component of new display devices such as virtual and augmented reality headsets. Applications of gaze information range from new interaction techniques exploiting eye patterns to gaze-contingent digital content creation. However, system latency is still a significant issue in many of these applications because it breaks the synchronization between the current and measured gaze positions. Consequently, it may lead to unwanted visual artifacts and degradation of user experience. In this work, we focus on foveated rendering applications where the quality of an image is reduced towards the periphery for computational savings. In foveated rendering, the presence of latency leads to delayed updates to the rendered frame, making the quality degradation visible to the user. To address this issue and to combat system latency, recent work proposes to use saccade landing position prediction to extrapolate the gaze information from delayed eye-tracking samples. While the benefits of such a strategy have already been demonstrated, the solutions range from simple and efficient ones, which make several assumptions about the saccadic eye movements, to more complex and costly ones, which use machine learning techniques. Yet, it is unclear to what extent the prediction can benefit from accounting for additional factors. This paper presents a series of experiments investigating the importance of different factors for saccades prediction in common virtual and augmented reality applications. In particular, we investigate the effects of saccade orientation in 3D space and smooth pursuit eye-motion (SPEM) and how their influence compares to the variability across users. We also present a simple yet efficient correction method that adapts the existing saccade prediction methods to handle these factors without performing extensive data collection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源