论文标题

学习转移文本发电提示

Learning to Transfer Prompts for Text Generation

论文作者

Li, Junyi, Tang, Tianyi, Nie, Jian-Yun, Wen, Ji-Rong, Zhao, Wayne Xin

论文摘要

审慎的语言模型(PLM)通过微调在文本生成任务方面取得了显着进步。虽然在数据筛选情况下微调PLM是一个挑战。因此,开发一个可以根据PLM适应各种文本生成任务的一般和轻量级模型是不平凡的。为了实现此目的,最近基于及时的学习提供了潜在的解决方案。在本文中,我们改进了这种技术,并提出了一种基于新颖的及时方法(PTG),以在可转移的环境中进行文本生成。首先,PTG学习了一组针对各种源生成任务的源提示,然后将这些提示作为目标提示来执行目标生成任务的目标提示。要考虑任务级别和实例级信息,我们设计了一种自适应注意机制来推导目标提示。对于每个数据实例,PTG通过参加高度相关的源提示来学习特定的目标提示。在广泛的实验中,与微调方法相比,PTG产生竞争性或更好的结果。我们将源提示作为开放资源发布,用户可以在其中添加或重用它们以改善新的文本生成任务以供将来的研究。代码和数据可以在https://github.com/rucaibox/transfer-prompts-for-text-generation上找到。

Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源