论文标题

潜艇:子树代替作曲语义解析

SUBS: Subtree Substitution for Compositional Semantic Parsing

论文作者

Yang, Jingfeng, Zhang, Le, Yang, Diyi

论文摘要

尽管序列到序列模型通常在I.I.D.的语义解析中实现良好的性能。数据,其性能在组成概括方面仍然不如。已经提出了几种数据增强方法来减轻此问题。但是,先前的工作仅利用表面语法或数据扩展规则,这导致了有限的进步。我们建议使用子树替换进行组成数据增强,在此我们认为具有类似语义函数的子树是可交换的。我们的实验表明,这种增强的数据导致扫描和地球上的性能明显更好,并在地球的组成分裂方面达到了新的SOTA。

Although sequence-to-sequence models often achieve good performance in semantic parsing for i.i.d. data, their performance is still inferior in compositional generalization. Several data augmentation methods have been proposed to alleviate this problem. However, prior work only leveraged superficial grammar or rules for data augmentation, which resulted in limited improvement. We propose to use subtree substitution for compositional data augmentation, where we consider subtrees with similar semantic functions as exchangeable. Our experiments showed that such augmented data led to significantly better performance on SCAN and GeoQuery, and reached new SOTA on compositional split of GeoQuery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源