论文标题

Bioculargan:眼部图像的双峰合成和注释

BiOcularGAN: Bimodal Synthesis and Annotation of Ocular Images

论文作者

Tomašević, Darian, Peer, Peter, Štruc, Vitomir

论文摘要

目前针对眼部图像的最新细分技术主要取决于大规模注释的数据集,这些数据集是劳动密集型的收集并经常引起隐私问题的。在本文中,我们提出了一个称为Bioculargan的新型框架,能够生成合成的大规模逼真的大规模数据集(可见光和近红外)眼图像,以及相应的分割标签以解决这些问题。从本质上讲,该框架依赖于促进双峰图像产生的新型双支型样式(DB-STYLEGAN2)模型,以及通过利用DB-Stylegan2模型的潜在特征来产生语义注释的语义蒙版生成器(SMG)组件。我们通过在五个不同的眼部数据集中进行的广泛实验评估Bioculargan,并分析双峰数据生成对图像质量和产生的注释的影响。我们的实验结果表明,BioCulargan能够产生高质量的匹配双峰图像和注释(使用最少的手动干预),可用于训练高度竞争性(深度)分割模型(在隐私意识到的人中),这些模型在多个现实世界数据集中都表现良好。 Bioculargan框架的源代码可在https://github.com/dariant/bioculargan上公开获得。

Current state-of-the-art segmentation techniques for ocular images are critically dependent on large-scale annotated datasets, which are labor-intensive to gather and often raise privacy concerns. In this paper, we present a novel framework, called BiOcularGAN, capable of generating synthetic large-scale datasets of photorealistic (visible light and near-infrared) ocular images, together with corresponding segmentation labels to address these issues. At its core, the framework relies on a novel Dual-Branch StyleGAN2 (DB-StyleGAN2) model that facilitates bimodal image generation, and a Semantic Mask Generator (SMG) component that produces semantic annotations by exploiting latent features of the DB-StyleGAN2 model. We evaluate BiOcularGAN through extensive experiments across five diverse ocular datasets and analyze the effects of bimodal data generation on image quality and the produced annotations. Our experimental results show that BiOcularGAN is able to produce high-quality matching bimodal images and annotations (with minimal manual intervention) that can be used to train highly competitive (deep) segmentation models (in a privacy aware-manner) that perform well across multiple real-world datasets. The source code for the BiOcularGAN framework is publicly available at https://github.com/dariant/BiOcularGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源