论文标题

使用本体来形式化和认识自动驾驶的关键性

Using Ontologies for the Formalization and Recognition of Criticality for Automated Driving

论文作者

Westhofen, Lukas, Neurohr, Christian, Butz, Martin, Scholtes, Maike, Schuldes, Michael

论文摘要

知识表示和推理有悠久的历史,即如何通过机器对知识进行形式化,解释和语义分析。在自动化车辆领域,最近的进步表明,能够将相关知识形式化和利用相关知识作为处理交通界固有且复杂的环境的关键推动力。本文表明,本体论是a)对自动车辆环境中与关键相关的因素进行建模和形式化的强大工具。为此,我们利用著名的6层模型来创建环境环境的形式表示。在此表示中,一个本体论将域知识模型为逻辑公理,从而促进交通场景和场景中的关键因素的存在。为了执行自动分析,将联合描述逻辑和规则推理器与A-Priori谓词增强结合使用。我们详细介绍了模块化方法,提出了公开可用的实施,并通过大规模的无人机数据集的城市交通情况评估了该方法。

Knowledge representation and reasoning has a long history of examining how knowledge can be formalized, interpreted, and semantically analyzed by machines. In the area of automated vehicles, recent advances suggest the ability to formalize and leverage relevant knowledge as a key enabler in handling the inherently open and complex context of the traffic world. This paper demonstrates ontologies to be a powerful tool for a) modeling and formalization of and b) reasoning about factors associated with criticality in the environment of automated vehicles. For this, we leverage the well-known 6-Layer Model to create a formal representation of the environmental context. Within this representation, an ontology models domain knowledge as logical axioms, enabling deduction on the presence of critical factors within traffic scenes and scenarios. For executing automated analyses, a joint description logic and rule reasoner is used in combination with an a-priori predicate augmentation. We elaborate on the modular approach, present a publicly available implementation, and evaluate the method by means of a large-scale drone data set of urban traffic scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源