论文标题
可扩展的正则关节混合模型
Scalable Regularised Joint Mixture Models
论文作者
论文摘要
在许多应用程序中,在跨越具有不同基础分布的潜在群体的意义上,数据可能是异质的。当将预测模型应用于此类数据时,异质性会影响预测性能和解释性。在无监督学习和正则回归的交集的基础上,我们提出了一种用于异质数据的方法,该方法允许(i)(i)(i)明确的多元特征分布,(ii)高维回归模型以及(iii)潜伏组的高维回归模型,以及(ii)和(i)和(i)和(ii)(i)和(ii)特定于潜伏的元素和两种元素(IIIIII)。该方法在高维度中明显有效,将计算效率的数据降低与重新加权方案相结合,该方案即使特征的数量较大,该方案即使保留了关键信号。我们详细讨论了这些方面及其对建模和计算的影响,包括EM收敛。该方法是模块化的,允许合并适合特定应用的数据减少和高维估计器。我们显示了广泛的模拟和真实数据实验的结果,包括高度非高斯数据。我们的结果允许在诸如生物医学等设置中对高维数据的有效分析,在这些设置中,需要可解释的预测和明确的特征空间模型,但隐藏的异质性可能是一个问题。
In many applications, data can be heterogeneous in the sense of spanning latent groups with different underlying distributions. When predictive models are applied to such data the heterogeneity can affect both predictive performance and interpretability. Building on developments at the intersection of unsupervised learning and regularised regression, we propose an approach for heterogeneous data that allows joint learning of (i) explicit multivariate feature distributions, (ii) high-dimensional regression models and (iii) latent group labels, with both (i) and (ii) specific to latent groups and both elements informing (iii). The approach is demonstrably effective in high dimensions, combining data reduction for computational efficiency with a re-weighting scheme that retains key signals even when the number of features is large. We discuss in detail these aspects and their impact on modelling and computation, including EM convergence. The approach is modular and allows incorporation of data reductions and high-dimensional estimators that are suitable for specific applications. We show results from extensive simulations and real data experiments, including highly non-Gaussian data. Our results allow efficient, effective analysis of high-dimensional data in settings, such as biomedicine, where both interpretable prediction and explicit feature space models are needed but hidden heterogeneity may be a concern.