论文标题

多模式遥感数据融合中的深度学习:全面评论

Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive Review

论文作者

Li, Jiaxin, Hong, Danfeng, Gao, Lianru, Yao, Jing, Zheng, Ke, Zhang, Bing, Chanussot, Jocelyn

论文摘要

随着遥感(RS)技术的极快进步,如今很容易获得具有相当大且复杂的异质性的大量地球观测(EO)数据,这使研究人员有机会以新的方式解决当前的地球科学应用。随着EO数据的共同利用,近年来,对多模式RS数据融合的大量研究取得了巨大进展,但是由于缺乏对这些强烈的异质数据的全面分析和解释能力,这些传统算法不可避免地满足了性能瓶颈。因此,这种不可忽略的限制进一步引起了对具有强大处理能力的替代工具的强烈需求。作为一种尖端技术,深度学习(DL)由于其在数据表示和重建方面的令人印象深刻的能力而在众多计算机视觉任务中取得了显着突破。自然,它已成功地应用于多模式RS数据融合的领域,与传统方法相比,它具有很大的改进。该调查旨在在基于DL的多模式RS数据融合中介绍系统概述。更具体地说,首先给出了有关此主题的一些基本知识。随后,进行了文献调查以分析该领域的趋势。然后,根据拟合融合的数据模式,即时空,时空,时空,光检测和范围,合成的孔径雷达雷达光照射,以及RS-GEGETOPATIAL大数据融合。此外,我们为了多模式RS数据融合的开发而收集和总结一些有价值的资源。最后,突出了其余的挑战和潜在的未来方向。

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源