论文标题

在Asplund空间中可靠的多目标优化编程的近似解决方案

Approximate solutions for robust multiobjective optimization programming in Asplund spaces

论文作者

Saadati, Maryam, Oveisiha, Morteza

论文摘要

在本文中,我们研究了一个非平滑/非convex多目标优化问题,并且在任意asplund空间中存在不确定的限制。我们首先以模糊形式提供必要的最佳条件,以近似弱强大的有效解决方案,然后建立必要的最佳定理,以在限制细分的含义上,通过利用Freechet subdifitiental的模糊最佳条件来利用限制细分的限制量效率。在广义伪凸函数的新概念下,还驱动了足够的(弱)鲁棒效率解决方案的足够条件。最后,我们解决了参考问题的近似Mond-weir型双重鲁棒问题,并在伪凸度的假设下探索弱,强和相反的二元性能。

In this paper, we study a nonsmooth/nonconvex multiobjective optimization problem with uncertain constraints in arbitrary Asplund spaces. We first provide necessary optimality condition in a fuzzy form for approximate weakly robust efficient solutions and then establish necessary optimality theorem for approximate weakly robust quasi-efficient solutions of the problem in the sense of the limiting subdifferential by exploiting a fuzzy optimality condition in terms of the Frechet subdifferential. Sufficient conditions for approximate (weakly) robust quasi-efficient solutions to such a problem are also driven under the new concept of generalized pseudo convex functions. Finally, we address an approximate Mond-Weir-type dual robust problem to the reference problem and explore weak, strong, and converse duality properties under assumptions of pseudo convexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源