论文标题
X-Cop Galaxy簇的重力场
The gravitational field of X-COP galaxy clusters
论文作者
论文摘要
大量暗物质光环的质量谱对暗物质的性质高度敏感,并且在大尺度上的重力理论的潜在修饰。 $λ$ CDM范式对暗物质光环的形状以及形状参数对光环质量的依赖性做出了有力的预测,以便任何偏离预测的通用形状的偏差都对暗物质的基本特性具有重要意义。在这里,我们使用一组12个带有可用的深X射线和Sunyaev-Zeldovich数据的星系簇来限制在半径中二十年的前所未有的精度水平的重力场的形状。平均而言,我们发现NFW配置文件很好地描述了恢复的质量剖面,在宽径向范围内偏差不到10%。但是,单个轮廓的形状似乎比NFW模型可以捕获更多的多样性。 NFW的平均浓度及其分散与$λ$ CDM框架的预测非常吻合。对于系统的一部分,我们将重力场分解为Baryonic成分(气体,最明亮的簇星系和卫星星系)和暗物质的贡献。恒星内容在$ \ sim0.02r_ {500} $内部主导着重力场,但仅负责$ r_ {200} $内部的总重力场的1-2%。巴里昂的总数达到$ r_ {200} $的宇宙价值,并且略微超过了这一点,可能表明集群郊区的非热压力支持($ 10-20 \%$)。最后,观察到的与男性加速度之间的关系表现出复杂的形状,螺旋星系中的径向加速度关系很强,这表明上述关系在星系簇量表上不存在。
The mass profiles of massive dark matter halos are highly sensitive to the nature of dark matter and potential modifications of the theory of gravity on large scales. The $Λ$CDM paradigm makes strong predictions on the shape of dark matter halos and on the dependence of the shape parameters on halo mass, such that any deviation from the predicted universal shape would have important implications for the fundamental properties of dark matter. Here we use a set of 12 galaxy clusters with available deep X-ray and Sunyaev-Zeldovich data to constrain the shape of the gravitational field with an unprecedented level of precision over two decades in radius. On average, we find that the NFW profile provides an excellent description of the recovered mass profiles, with deviations of less than 10% over a wide radial range. However, there appears to be more diversity in the shape of individual profiles than can be captured by the NFW model. The average NFW concentration and its scatter agree very well with the prediction of the $Λ$CDM framework. For a subset of systems, we disentangle the gravitational field into the contribution of baryonic components (gas, brightest cluster galaxy, and satellite galaxies) and that of dark matter. The stellar content dominates the gravitational field inside $\sim0.02R_{500}$ but is responsible for only 1-2% of the total gravitational field inside $R_{200}$. The total baryon fraction reaches the cosmic value at $R_{200}$ and slightly exceeds it beyond this point, possibly indicating a mild level of nonthermal pressure support ($10-20\%$) in cluster outskirts. Finally, the relation between observed and baryonic acceleration exhibits a complex shape that strongly departs from the radial acceleration relation in spiral galaxies, which shows that the aforementioned relation does not hold at the galaxy-cluster scale.