论文标题

公平框架:超出均衡预测结果的公平性

The Equity Framework: Fairness Beyond Equalized Predictive Outcomes

论文作者

Naggita, Keziah, Aguma, J. Ceasar

论文摘要

现在,机器学习(ML)决策算法现在广泛用于预测决策,例如确定谁承认并提供贷款。他们对个体的广泛使用和结果影响,导致ML社区对算法如何对不同的人和社区有何不同的影响提出质疑并引起人们的关注。在本文中,我们研究了当决策者使用模型(代理模型)偏离描述决策所在的物理和社会环境(预期模型)的模型时出现的公平问题。我们还强调了障碍对模型单个访问和利用的影响。为此,我们制定了一个公平框架,该框架认为对模型的平等访问,模型的平等结果以及对模型的平等利用,并与目前的公平概念相比,旨在实现平等的公平概念,以平等的态度实现了公平和更高的社会福利。我们展示了该框架的三个主要方面是如何连接的,并提供了股权评分算法和问题,以指导决策者进行公平的决策。我们展示了未能考虑访问,结果和利用方式如何加剧代理差距,从而导致无限的不平等循环通过不准确和不完整的地面真相策划加强结构不平等。因此,我们建议对模型设计及其对公平的影响以及向公平实现预测决策模型的转变进行更批判性的研究。

Machine Learning (ML) decision-making algorithms are now widely used in predictive decision-making, for example, to determine who to admit and give a loan. Their wide usage and consequential effects on individuals led the ML community to question and raise concerns on how the algorithms differently affect different people and communities. In this paper, we study fairness issues that arise when decision-makers use models (proxy models) that deviate from the models that depict the physical and social environment in which the decisions are situated (intended models). We also highlight the effect of obstacles on individual access and utilization of the models. To this end, we formulate an Equity Framework that considers equal access to the model, equal outcomes from the model, and equal utilization of the model, and consequentially achieves equity and higher social welfare than current fairness notions that aim for equality. We show how the three main aspects of the framework are connected and provide an equity scoring algorithm and questions to guide decision-makers towards equitable decision-making. We show how failure to consider access, outcome, and utilization would exacerbate proxy gaps leading to an infinite inequity loop that reinforces structural inequities through inaccurate and incomplete ground truth curation. We, therefore, recommend a more critical look at the model design and its effect on equity and a shift towards equity achieving predictive decision-making models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源