论文标题

比特币价格预测的交叉加密货币关系挖掘

Cross Cryptocurrency Relationship Mining for Bitcoin Price Prediction

论文作者

Li, Panpan, Gong, Shengbo, Xu, Shaocong, Zhou, Jiajun, Shanqing, Yu, Xuan, Qi

论文摘要

区块链金融已成为世界金融体系的一部分,通常表现出对比特币价格的关注。但是,大量工作仍然仅限于使用技术指标来捕获比特币的价格波动,而相关加密货币之间的历史关系和相互作用几乎没有考虑。在这项工作中,我们提出了一个名为C2RM的通用跨晶体关系挖掘模块,该模块可以有效地捕获比特币和相关山寨币之间的同步和异步影响因子。具体而言,我们利用动态的时间扭曲算法来提取铅滞后关系,从而产生铅滞后差异内核,该方差将用于汇总AltCoins的信息以形成关系影响因素。全面的实验结果表明,我们的C2RM可以帮助现有的价格预测方法实现显着的绩效提高,这表明跨金属货币相互作用对受益比特币价格预测的有效性。

Blockchain finance has become a part of the world financial system, most typically manifested in the attention to the price of Bitcoin. However, a great deal of work is still limited to using technical indicators to capture Bitcoin price fluctuation, with little consideration of historical relationships and interactions between related cryptocurrencies. In this work, we propose a generic Cross-Cryptocurrency Relationship Mining module, named C2RM, which can effectively capture the synchronous and asynchronous impact factors between Bitcoin and related Altcoins. Specifically, we utilize the Dynamic Time Warping algorithm to extract the lead-lag relationship, yielding Lead-lag Variance Kernel, which will be used for aggregating the information of Altcoins to form relational impact factors. Comprehensive experimental results demonstrate that our C2RM can help existing price prediction methods achieve significant performance improvement, suggesting the effectiveness of Cross-Cryptocurrency interactions on benefitting Bitcoin price prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源