论文标题

乘法功能类似于莫比乌斯·funciton

Multiplicative functions resembling the Möbius funciton

论文作者

Liu, Qingyang

论文摘要

如果在无方面的整数上支持$ f $,则据说乘法$ f $类似于möbius函数,而每个prime $ p $ $ f(p)= \ pm 1 $。我们证明了$ o $ - 和$ω$ - 用于省点功能的$ \ sum_ {n \ leq x} f(n)$用于Aymone研究的这些$ f $的类别,而关键是这些$ o $ $ $ $ $ $ $ $ $ - 分子表现出比方形储蓄更好的取消。尤其证明,在Riemann假设下,夏季函数为$ O(x^{1/3+\ varepsilon})$。另一方面,事实证明是$ω(x^{1/4})$无条件。将它们与Möbius函数的相应结果进行比较很有趣。

A multiplicative function $f$ is said to be resembling the Möbius function if $f$ is supported on the square-free integers, and $f(p)=\pm 1$ for each prime $p$. We prove $O$- and $Ω$-results for the summatory function $\sum_{n\leq x} f(n)$ for a class of these $f$ studied by Aymone, and the point is that these $O$-results demonstrate cancellations better than the square-root saving. It is proved in particular that the summatory function is $O(x^{1/3+\varepsilon})$ under the Riemann Hypothesis. On the other hand it is proved to be $Ω(x^{1/4})$ unconditionally. It is interesting to compare these with the corresponding results for the Möbius function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源