论文标题

带有积极的未标签学习,并具有对抗性数据扩展,以实现知识图完成

Positive-Unlabeled Learning with Adversarial Data Augmentation for Knowledge Graph Completion

论文作者

Tang, Zhenwei, Pei, Shichao, Zhang, Zhao, Zhu, Yongchun, Zhuang, Fuzhen, Hoehndorf, Robert, Zhang, Xiangliang

论文摘要

大多数真实的知识图(kg)远非完整和全面。这个问题激发了预测最合理的缺失事实以完成给定的kg,即知识图完成(KGC)。但是,现有的kgc方法遇到了两个主要问题,1)虚假的负面问题,即,采样的负面培训实例可能包括潜在的真实事实; 2)数据稀疏问题,即真实事实仅解释了所有可能事实的一小部分。为此,我们提出了针对KGC的对抗数据增强(PUDA)的积极未标记的学习。特别是,PUDA针对KGC任务量身定制了正面标签的风险估计器,以解决虚假的负面问题。此外,为了解决数据稀疏问题,PUDA通过在积极的未标记的Minimax游戏中统一对抗性培训和积极的未标记学习来实现数据增强策略。现实基准数据集的广泛实验结果证明了我们提出的方法的有效性和兼容性。

Most real-world knowledge graphs (KG) are far from complete and comprehensive. This problem has motivated efforts in predicting the most plausible missing facts to complete a given KG, i.e., knowledge graph completion (KGC). However, existing KGC methods suffer from two main issues, 1) the false negative issue, i.e., the sampled negative training instances may include potential true facts; and 2) the data sparsity issue, i.e., true facts account for only a tiny part of all possible facts. To this end, we propose positive-unlabeled learning with adversarial data augmentation (PUDA) for KGC. In particular, PUDA tailors positive-unlabeled risk estimator for the KGC task to deal with the false negative issue. Furthermore, to address the data sparsity issue, PUDA achieves a data augmentation strategy by unifying adversarial training and positive-unlabeled learning under the positive-unlabeled minimax game. Extensive experimental results on real-world benchmark datasets demonstrate the effectiveness and compatibility of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源