论文标题

从嘈杂的预测到真实标签:通过生成模型嘈杂的预测校准

From Noisy Prediction to True Label: Noisy Prediction Calibration via Generative Model

论文作者

Bae, HeeSun, Shin, Seungjae, Na, Byeonghu, Jang, JoonHo, Song, Kyungwoo, Moon, Il-Chul

论文摘要

嘈杂的标签在机器学习社会中不可避免地存在问题。它通过使分类器过度适合嘈杂标签来破坏分类器的概括。现有的嘈杂标签方法的重点是在培训过程中修改分类器。它有两个潜在的问题。首先,这些方法不适用于预训练的分类器,而无需进一步访问培训。其次,同时训练分类器并将所有负面效果正规化并不容易。我们建议使用嘈杂标签学习的方法,嘈杂的预测校准(NPC)的新分支。通过通过生成模型的引入和估计新型的过渡矩阵,NPC纠正了从预训练的分类器到TRUE标签作为后处理方案的嘈杂预测。我们证明NPC理论上与基于过渡矩阵的方法一致。但是,即使没有参与分类器学习,NPC从经验上提供了更准确的估计真实标签的途径。此外,如果培训实例及其预测,NPC适用于接受嘈杂标签方法的任何分类器。我们的方法NPC可以提高合成和现实数据集上所有基线模型的分类性能。实施的代码可在https://github.com/baeheesun/npc上找到。

Noisy labels are inevitable yet problematic in machine learning society. It ruins the generalization of a classifier by making the classifier over-fitted to noisy labels. Existing methods on noisy label have focused on modifying the classifier during the training procedure. It has two potential problems. First, these methods are not applicable to a pre-trained classifier without further access to training. Second, it is not easy to train a classifier and regularize all negative effects from noisy labels, simultaneously. We suggest a new branch of method, Noisy Prediction Calibration (NPC) in learning with noisy labels. Through the introduction and estimation of a new type of transition matrix via generative model, NPC corrects the noisy prediction from the pre-trained classifier to the true label as a post-processing scheme. We prove that NPC theoretically aligns with the transition matrix based methods. Yet, NPC empirically provides more accurate pathway to estimate true label, even without involvement in classifier learning. Also, NPC is applicable to any classifier trained with noisy label methods, if training instances and its predictions are available. Our method, NPC, boosts the classification performances of all baseline models on both synthetic and real-world datasets. The implemented code is available at https://github.com/BaeHeeSun/NPC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源